并行度设置
并发度的2~3倍
输出产生小文件优化
Join后的结果插入新表
生成文件数 = shuffle并行度
解决方法
调整并行度
调用缩小分区算子(coalesce、repartition)
动态分区插入数据
当spark.sql.shuffle.partitions设置过大时,小文件问题;
当spark.sql.shuffle.partitions设置过小时,并行度下降,性能受损。
解决方法
利用distribute by按照某个字段分区。但会引起数据倾斜,所以抽样出大key,将大key再均分到几个分区。

增大reduce缓冲区,减少拉取次数
spark.reducer.maxSizeInFlight
reduce端数据拉取缓冲区的大小,默认48M,一般够用。
调节reduce端拉取数据重试次数
spark.shuffle.io.maxRetries
默认是为3,不要调太大。
调节reduce端拉取数据等待间隔
spark.shuffle.io.retryWait
reduce端拉取数据等待间隔,默认为5s
合理利用bypass
当shuffle为sortMerge时,如果shuffle read task的数量小于阈值spark.shuffle.sort.bypassMergeThreshold(默认200),并不需要map端预合并(HashAggregate->Exchange->HashAggregate),则shuffle write过程不需要进行sort,使用bypassMerge去写数据。
如果真的不需要排序,可以适当调高阈值。
本文探讨了在Spark中如何通过调整并行度、使用缩小分区算子、动态分区策略以及优化reduce端操作来提升性能,包括增大reduce缓冲区、控制重试次数和等待间隔,以及利用bypassMerge避免不必要的排序。
1221

被折叠的 条评论
为什么被折叠?



