Spark调优学习记录(十二)Reduce端优化

本文探讨了在Spark中如何通过调整并行度、使用缩小分区算子、动态分区策略以及优化reduce端操作来提升性能,包括增大reduce缓冲区、控制重试次数和等待间隔,以及利用bypassMerge避免不必要的排序。
摘要由CSDN通过智能技术生成

并行度设置

并发度的2~3倍

输出产生小文件优化

Join后的结果插入新表

生成文件数 = shuffle并行度

解决方法

        调整并行度

        调用缩小分区算子(coalesce、repartition)

动态分区插入数据

当spark.sql.shuffle.partitions设置过大时,小文件问题;

当spark.sql.shuffle.partitions设置过小时,并行度下降,性能受损。

解决方法

        利用distribute by按照某个字段分区。但会引起数据倾斜,所以抽样出大key,将大key再均分到几个分区。

增大reduce缓冲区,减少拉取次数

spark.reducer.maxSizeInFlight

reduce端数据拉取缓冲区的大小,默认48M,一般够用。

调节reduce端拉取数据重试次数

spark.shuffle.io.maxRetries

默认是为3,不要调太大。

调节reduce端拉取数据等待间隔

spark.shuffle.io.retryWait

reduce端拉取数据等待间隔,默认为5s

合理利用bypass

当shuffle为sortMerge时,如果shuffle read task的数量小于阈值spark.shuffle.sort.bypassMergeThreshold(默认200),并不需要map端预合并(HashAggregate->Exchange->HashAggregate),则shuffle write过程不需要进行sort,使用bypassMerge去写数据。

如果真的不需要排序,可以适当调高阈值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值