一、HKS 概述
热核特征 (HKS, Heat Kernel Signature) 是一种基于 热方程 的形状特征描述子,广泛用于三维形状分析、匹配、分类等任务。HKS 的核心思想是模拟热扩散过程,并利用该过程得到的特征表示形状的几何特征。具体地,HKS 通过热方程的解来表示形状在不同时间尺度上的变化,进而反映形状的局部和全局几何特征。
热方程的基本概念
热方程模拟了热的传播过程。在三维空间中,热方程的标准形式为:
∂u(x,t)∂t=Δu(x,t)\frac{\partial u(x,t)}{\partial t} = \Delta u(x,t)∂t∂u(x,t)=Δu(x,t)
其中,u(x,t)u(x,t)u(x,t) 表示在位置 xxx 和时间 ttt 上的热分布,Δ\DeltaΔ 是拉普拉斯算子。热核 K(x,t)K(x, t)K(x,t) 是这个方程的解,表示热扩散过程中的温度分布。
HKS 利用该热扩散过程中的解来构建形状特征。它基于热核函数的时间尺度来编码形状的局部几何特征,并且具有不变性(例如,旋转、缩放不变性),因此在点云匹配、物体识别等任务中具有广泛应用。
二、HKS 描述子的计算过程
-
拉普拉斯算子的计算:
- <