第63章:PCL HKS 热核特征 (Heat Kernel Signature, HKS)

一、HKS 概述

热核特征 (HKS, Heat Kernel Signature) 是一种基于 热方程 的形状特征描述子,广泛用于三维形状分析、匹配、分类等任务。HKS 的核心思想是模拟热扩散过程,并利用该过程得到的特征表示形状的几何特征。具体地,HKS 通过热方程的解来表示形状在不同时间尺度上的变化,进而反映形状的局部和全局几何特征。

热方程的基本概念

热方程模拟了热的传播过程。在三维空间中,热方程的标准形式为:

∂u(x,t)∂t=Δu(x,t)\frac{\partial u(x,t)}{\partial t} = \Delta u(x,t)∂t∂u(x,t)​=Δu(x,t)

其中,u(x,t)u(x,t)u(x,t) 表示在位置 xxx 和时间 ttt 上的热分布,Δ\DeltaΔ 是拉普拉斯算子。热核 K(x,t)K(x, t)K(x,t) 是这个方程的解,表示热扩散过程中的温度分布。

HKS 利用该热扩散过程中的解来构建形状特征。它基于热核函数的时间尺度来编码形状的局部几何特征,并且具有不变性(例如,旋转、缩放不变性),因此在点云匹配、物体识别等任务中具有广泛应用。


二、HKS 描述子的计算过程

  1. 拉普拉斯算子的计算

    • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

《雨声》

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值