POSIX多线程笔记(3):线程特定数据

在单线程程序中,函数经常使用全局变量或静态变量,这是不会影响程序的正确性的,但如果线程调用的函数使用全局变量或静态变量,则很可能引起编程错误,因为这些函数使用的全局变量和静态变量无法为不同的线程保存各自的值,而当同一进程内的不同线程几乎同时调用这样的函数时就可能会有问题发生。而解决这一问题的一种方式就是使用线程特定数据机制。

static char str[100]; 
void A(char* s) 
{
	strncpy(str,s,100);
} 
void B()
{
	printf("%s\n",str);
}

在上面这个例子中,可以想象,如果在多线程程序中,各个线程都依次调用函数A和函数B,那么某些线程可能得不到期望的显示结果,因为它使用B显示的字符串可能并不是在A中设置的字符串。

Key结构数组

POSIX要求实现POSIX的系统为每个进程维护一个称之为Key的结构数组,这个数组中的每一个结构称之为一个线程特定数据元素。POSIX规定系统实现的Key结构数组必须包含不少于128个线程特定数据元素,而每个线程特定数据元素中至少包含两项内容:使用标志和析构函数指针。
Key结构数组中每个元素的索引(0~127)称之为键(key),当一个线程调用pthread_key_create创建一个新的线程特定数据元素时,系统搜索其所在进程的Key结构数组,找出其中第一个不在使用的元素,并返回该元素的键。这个函数的形式为:

int pthread_key_create(pthread_key_t keyptr, void ( destructor)(void *value));
参数keyptr为一个pthread_key_t变量的指针,用于保存得到的键值。参数destructor为指定的析构函数的指针。

除了Key结构数组,系统还在进程中维护关于每个线程的多种信息。这些特定于线程的信息被保存于称之为Pthread的结构中。Pthread结构中包含名为pkey的指针数组,其长度为128,初始值为空。这128个指针与Key结构数组的128个线程特定数据元素一一对应。在调用pthread_key_create得到一个键之后,每个线程可以依据这个键操作自己的pkey指针数组中对应的指针,这通过pthread_getspecific和pthread_setspecific函数来实现。这两个函数的形式为:

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);
pthread_getspecific返回pkey中对应于key的指针,而pthread_setspecific将pkey中对应于key的指针设置为value。

我们使用线程特定数据机制,就是要使线程中的函数可以共享一些数据。如果我们在线程中通过malloc获得一块内存,并把这块内存的指针通过pthread_setspecific设置到pkey指针数组中对应于key的位置,那么线程中调用的函数即可通过pthread_getspecific获得这个指针,这就实现了线程内部数据在各个函数间的共享。当一个线程终止时,系统将扫描该线程的pkey数组,为每个非空的pkey指针调用相应的析构函数,因此只要将执行回收的函数的指针在调用pthread_key_create时作为函数的参数,即可在线程终止时自动回收分配的内存区。

#include <stdio.h>
#include <pthread.h>
#include <string.h>

#define LEN 100 
pthread_key_t key; 
void A(char *s) 
{
	char *str = (char*)pthread_getspecific(key); 
	strncpy(str, s, LEN); 	
}
void B()
{
	char *str = (char*)pthread_getspecific(key);
	printf("%s\n", str); 
}
void destructor(void *ptr) 
{	
	free(ptr);
	printf("memory freed\n"); 
}
void *threadfunc1(void *pvoid) 
{
	pthread_setspecific(key, malloc(LEN));
	A("Thread1");
	B(); 
}
void *threadfunc2(void *pvoid) 
{
	pthread_setspecific(key, malloc(LEN));
	A("Thread2");
	B(); 
}
int main() 
{
	pthread_t tid1, tid2;
	pthread_key_create(&key, destructor);
	pthread_create(&tid1, NULL, &threadfunc1, NULL);
	pthread_create(&tid2, NULL, &threadfunc2, NULL);
	pthread_exit(NULL);
	return 0;
}

在这个程序中,函数A和函数B共享了一个内存区,而这个内存区是特定于调用A和B的线程的,对于其它线程,这个内存区是不可见的。这就安全有效地达到了在线程中的各个函数之间共享数据的目的。

运行结果

在这里插入图片描述

运行分析

首先定义一个全局变量pthread_key_t key,然后在main中用pthread_key_create创建一个当前进程专用的Key数组,他的析构函数为destructor,当进程结束以后,程序就会自动检查Key数组中已经使用的元素,把改元素作为输入参数,调用析构函数,从而释放掉内存。紧接着就是在main函数里面创建了两个线程,在线程中首先用pthread_setspecific从Key数组中获取一个对应当前进程的元素,然后让这个指针指向分配LEN大小的空间。最后就是用pthread_getspecific获取Key数组中对应该线程的指针,并对他操作。

**卷积序列嵌入推荐模型(Caser)的Matlab实现解析** 卷积神经网络在序列数据处理中展现出卓越性能,尤其在时间序列分析与自然语言处理领域。Caser模型创新性地将卷积结构引入推荐系统,通过挖掘用户历史行为中的时序特征,构建动态兴趣画像,从而提升个性化推荐的精准度。 **模型架构与技术细节** 1. **双路径卷积设计**:模型采用水平与垂直两个方向的卷积结构。水平卷积聚焦于用户近期行为模式,提取短期兴趣特征;垂直卷积则分析历史交互的整体分布,刻画长期偏好倾向。两种特征经融合后形成完整的用户表征。 2. **序列向量化处理**:用户历史交互记录被编码为定长嵌入向量序列,每个向量对应项目的潜在特征。这种表示方法既能保留项目的语义信息,又可通过卷积运算挖掘项目间的关联规律。 3. **多尺度特征提取**:卷积层配备不同尺寸的滤波器核,分别捕获局部序列片段和全局维度关系。水平卷积沿时间轴滑动检测时序模式,垂直卷积在特征维度上进行交叉分析。 4. **特征压缩与强化**:池化层对卷积输出进行降维处理,通过最大值池化保留显著特征,或通过均值池化整合全局信息,在维持表征能力的同时提升计算效率。 5. **预测模块构建**:全连接层将抽象特征映射为预测分值,采用均方误差或交叉熵作为优化目标,通过梯度下降算法迭代调整模型参数,缩小预测值与真实反馈的差异。 **Matlab实现方案** 1. **模块化编程框架**:项目文件包含数据加载、网络构建、训练流程和性能评估四大核心模块,采用函数封装方式保证代码可复用性。 2. **数据标准化流程**:原始数据经矩阵化转换后,进行数值归一化与缺失值填补处理,形成符合模型输入规范的张量结构。 3. **网络组件配置**:依托深度学习工具箱,逐层定义卷积核数量、池化窗口尺寸、全连接节点数等结构参数,构建端到端的计算图谱。 4. **训练策略优化**:配置自适应动量优化器,采用动态学习率调整机制,结合早停法与权重衰减技术平衡模型收敛速度与泛化能力。 5. **评估体系建立**:通过批量推理生成推荐列表,综合计算准确率、覆盖率及多样性指标,采用交叉验证评估模型稳定性。 该实现方案充分发挥Matlab在矩阵运算与原型开发中的优势,为推荐算法研究提供可扩展的实验平台。通过调整网络深度、滤波器配置等超参数,可适应电商、社交网络等不同应用场景的个性化需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值