高数上下册
《概率论与数理统计浙大版》
《数理统计学简史》陈希孺
《矩阵分析与应用》张贤达
《凸优化 (Convex Optimization)》-Stphen Boyd&Lieven Vandenberghe
《统计学习方法》李航
《PRML》
1、机器学习中的数学基础
Taylor展式的应用
常见概率分布与共轭分布
最大似然估计
中心极限定理及其应用
大数定理及其应用
Lagrange凸优化
2、Python及其数学/机器学习库的使用
机器学习算法类别
机器学习应用的一般流程
解释器Python2.7与IDE:Anaconda/Pycharm
numpy/scipy/matplotlib/panda库的介绍和典型使用
举例:SVD用于图像处理
3、回归
线性回归
高斯分布
Logistic回归
最大似然估计
梯度下降算法:BGD与SGD
特征选择与过拟合
4、回归实践
机器学习sklearn库介绍
Ridge回归、LASSO
Logistic/Softmax回归
回归代码实现和调参
数据可视化
5、决策树和随机森林
熵、联合熵、条件熵、KL散度、互信息
最大似然估计与最大熵模型
ID3、C4.5、CART详解
决策树的评价
预剪枝和后剪枝
Bagging
随机森林
6、随机森林实践
手写随机森林实践
调用开源库函数完成随机森林
数据结构的综合使用
gini系数
7、提升
提升为什么有效
Adaboost算法
加法模型与指数损失
梯度提升决策树GBDT
8、xgboost
自己动手实现GBDT
xgboost库介绍
Taylor展式与学习算法
xgboost应用于实践
9、SVM
线性可分支持向量机
软间隔的改进
损失函数的理解
核函数的原理和选择
SMO算法
10、SVM实践
libSVM代码库介绍
原始数据和特征提取
手写随机森林实践
调用开源库函数完成SVM
SVM、Logistic回归、随机森林三者的横向比较
11、聚类
各种相似度度量及其相互关系
k-means与K-Medoids及变种
AP算法/LPA算法及其应用
密度聚类DBSCAN/DCluster(Science2014)
谱聚类SC
聚类评价和结果指标
12、聚类实践
动手自己实现K-means
K-Means++算法原理和实现
并查集的实践应用
密度聚类的代码实现
使用开源机器学习包完成聚类
13、EM算法
最大似然估计
Jensen不等式
朴素理解EM算法
精确推导EM算法
EM算法的深入理解
混合高斯分布
14、EM算法实践
多元高斯分布的EM实现
分类结果的数据可视化
EM与聚类的比较
主题模型pLSA与EM算法
15、主题模型LDA
贝叶斯学派的模型认识
共轭先验分布
Dirichlet分布
Laplace平滑
Gibbs采样详解
16、LDA实践
停止词和高频词
动手自己实现LDA
LDA开源包的使用和过程分析
Metropolis-Hastings算法
MCMC
LDA与word2vec的比较
17、隐马尔科夫模型HMM
概率计算问题
前向/后向算法
HMM的参数学习
Baum-Welch算法详解
Viterbi算法详解
18、HMM实践
动手自己实现HMM用于中文分词
多个语言分词开源包的使用和过程分析
文件数据格式UFT-8、Unicode
停止词和标点符号对分词的影响
前向后向算法计算概率溢出的解决方案
EM算法和MLE的优劣比较
发现新词和分词效果分析
附赠:机器学习用于股票预测(综合)
你可以从一个由你熟悉的语言编写的库开始学习,然后再去学习其他功能强大的库。如果你是一个优秀的程序员,你会知道怎样从一种语言,简单合理地迁移到另一种语言。语言的逻辑都是相同的,只是语法和API稍有不同。
•R Project for Statistical Computing:这是一个开发环境,采用一种近似于Lisp的脚本语言。在这个库中,所有你想要的与统计相关的功能都通过R语言提供,包括一些复杂的图标。CRAN(你可以认为是机器学弟的第三方包)中的机器学习目录下的代码,是由统计技术方法和其他相关领域中的领军人物编写的。如果你想做实验,或是快速拓展知识,R语言都是必须学习的。但它可能不是你学习的第一站。
•WEKA:这是一个数据挖掘工作平台,为用户提供数一系列据挖掘全过程的API、命令行和图形化用户接口。你可以准备数据、可视化、建立分类、进行回归分析、建立聚类模型,同时可以通过第三方插件执行其他算法。除了WEKA之外, Mahout是Hadoop中为机器学习提供的一个很好的JAVA框架,你可以自行学习。如果你是机器学习和大数据学习的新手,那么坚持学习WEKA,并且全心全意地学习一个库。
•Scikit Learn:这是用Python编写的,基于NumPy和SciPy的机器学习库。如果你是一个Python或者Ruby语言程序员,这是适合你用的。这个库很用户接口友好,功能强大,并且配有详细的文档说明。如果你想试试别的库,你可以选择Orange。
•Octave:如果你很熟悉MatLab,或者你是寻求改变的NumPy程序员,你可以考虑 Octave。这是一个数值计算环境,与MatLab像是,借助Octave你可以很方便地解决线性和非线性问题,比如机器学习算法底层涉及的问题。如果你有工程背景,那么你可以由此入手。
•BigML:可能你并不想进行编程工作。你完全可以不通过代码,来使用 WEKA那样的工具。你通过使用BigMLS的服务来进行更加深入的工作。BigML通过Web页面,提供了机器学习的接口,因此你可以通过浏览器来建立模型。
挑选出一个平台,并且在你实际学习机器学习的时候使用它。不要纸上谈兵,要去实践!
Video Courses视频课程
很多人都是通过视频资源开始接触机器学习的。我在YouTube和VideoLectures上看了很多于机器学习相关的视频资源。这样做的问题是,你可能只是观看视频而并不实际去做。我的建议是,你在观看视频的时候,应该多记笔记,及时后来你会抛弃你的笔记。同时,我建议你将学到的东西付诸实践。
坦白讲,我没有看见特别合适初学者的视频资源。视频资源都需要你掌握一定的线性代数、概率论等知识。Andrew Ng在斯坦福的讲解可能是最适合初学者的,下面是我推荐的一些视频资源。
•Stanford Machine Learning斯坦福的机器学习课程:可以在Coursera上观看,这门课是由 Andrew Ng讲解的。只要注册,你可以随时观看所有的课程视频,从Stanford CS229 course下载讲义和笔记。这门课包括了家庭作业和小测试,课程主要讲解了线性代数的知识,使用Octave库。
•Caltech Learning from Data加利福尼亚理工学院的数据分析课程:你可以在edX上学习这门课程,课程是由Yaser Abu-Mostafa讲解的。所有的课程视频和资料都在加利福尼亚理工学院的网站上。与斯坦福的课程类似,你可以根据自己的情况安排学习进度,完成家庭作业和小论文。它与斯坦福的课程主题相似,关注更多的细节和数学知识。对于初学者来说,家庭作业可能稍有难度。
•Machine Learning Category on VideoLectures.Net网站中的机器学习目录:这是个很容易令人眼花缭乱的资源库。你可以找出比较感兴趣的资源,并且深入学习。不要纠结于不适合你的视频,或者对于感兴趣的内容你可以做笔记。我自己会一直重复深入学习一些问题,同时发现新的话题进行学习。此外,在这个网站上你可以发现是这个领域的大师是什么样的。
•“Getting In Shape For The Sport Of Data Science” – 由Jeremy Howard讲授:这是与机器学习竞赛者的对话,他们是一些实践中的R语言用户。这是非常珍贵的资源,因为很少有人会讨论研究一个问题的完整过程和究竟怎样做。我曾经幻想过在网上找到一个TV秀,记录机器学习竞赛的全过程。这就是我开始学习机器学习的经历!
Overview Papers综述论文
如果你并不习惯阅读科研论文,你会发现论文的语言非常晦涩难懂。一篇论文就像是一本教科书的片段,但是论文会介绍一个实验或者是领域中其他的前沿知识。然而,如果你准备从阅读论文开始学习机器学习的话,你还是可以找到一些很有意思的文章的。
•The Discipline of Machine Learning机器学习中的规则:这是由Tom Mitchell编著的白皮书,其中定义了机器学习的规则。Mitchell在说服CMU总裁为一个百年内都存在的问题建立一个独立的机器学习部门时,也用到了这本书中的观点。
•A Few Useful Things to Know about Machine Learning:这是一篇很好的论文,因为它以详细的算法为基础,又提出了一些很重要的问题,比如:选择特征的一般化,模型简化等。
我只是列出了两篇重要的论文,因为阅读论文会让你陷入困境。
Beginner Machine Learning Books给机器学习初学者的书
关于机器学习的书有很多,但是几乎没有为初学者量身定做的。什么样的人才是初学者呢?最有可能的情况是,你从另外一个完全不同的领域比如:计算机科学、程序设计或者是统计学,来到机器学习领域。那么,大部分的书籍要求你有一定的线性代数和概率论的基础。
但是,还有一些书通过讲解最少的算法来鼓励程序员学习机器学习,书中会介绍一些可以使用工具、编程函数库来让程序员尝试。其中最有代表性的书是:《Programming Collective Intelligence》,《Machine Learning for Hackers》,《Hackersand Data Mining: Practical Machine Learning Tools and Techniques》(Python版, R版, 以及Java版)。如果感到迷惑的话,你可以选择其中一本开始学习。
•Programming Collective Intelligence: Building Smart Web 2.0 Applications:这本书是为程序员写的。书中简略介绍相关理论,重点以程序为例,介绍web中的实际问题和解决办法。你可以买来这本书,阅读,并且做一些练习。
•Machine Learning for Hackers (中文版:机器学习:实用案例解析 ):我建议你在阅读了《Programming Collective Intelligence》一书之后,再阅读这本书。这本书中也提供了很多实践练习,但是涉及更多的数据分析,并且使用R语言。我个人很喜欢这本书!
•Machine Learning: An Algorithmic Perspective:这本书是《Programming Collective Intelligence》的高级版本。它们目的相同(让程序员开始了解机器学习),但是这本书包括一些数学知识,参考样例和phython程序片段。如果你有兴趣的话,我建议你在看完《Programming Collective Intelligence》之后来阅读这本书。
•数据挖掘:实用机器学习工具与技术(英文版·第3版) :我自己是从这本书开始了解机器学习的,那时是2000年这本书还是第一版。我那时是Java程序员,这本书和WEKA库为我的学习和实践提供了一个很好的环境。我通过这样的平台和一些插件,实现我的算法,并且真正开始实践机器学习和数据挖掘的过程。我强烈推荐这本书,和这样的学习过程。
•Machine Learning(中文版:计算机科学丛书:机器学习 ):这是一本很老的书,包括了一些规则和很多参考资料。这是一本教科书,为每个算法提供了相关讲解。
有一些人认为那些经典的机器学习教科书很了不起。 我也赞同,那些书的确非常好。但是,我认为,对于初学者来说,这些书可能并不合适。
Further Reading 继续阅读
在写这篇文章时,我认真思考了相关问题,同时也参考了其他人推荐的资料,以确保我没有遗漏任何重要参考资料。为了确保文章的完整性,下面也列出了一些网上流行的,可以供初学者使用的材料。.
•A List of Data Science and Machine Learning Resources:这是一份仔细整理的列表。你可以花一些时间,点击链接,仔细阅读作者的建议。值得一读!
•What are some good resources for learning about machine learning Why:这个问题的第一个答案令人吃惊。每次我阅读这篇文章的时候,都会做好笔记,并且插入新的书签。答案中对我最有启发的部分是机器学习课程列表,以及相应的课程笔记和问答网站。
•Overwhelmed by Machine Learning: is there an ML101 book:这是StackOverflow上的问题。并且提供了一系列机器学习推荐书籍。Jeff Moser提供的第一个答案是很有用的,其中有课程视频和讲座的链接。