上一篇看完了ofbiz entity engine,这篇再来过一下ofbiz的service engine。service engine层在设计模式的使用上跟entity engine有些类似,最典型的就是“业务代表”模式。service engine跟entity engine是紧密相关的,大部分的业务系统所要执行的服务都是跟关系数据库相关的。
service engine对于服务编写的方式有着非常广泛的“自由”,你可以选择它内置引擎支持的任何一种方式来编写服务。同时对于eca的支持对于事务的支持以及对于权限的支持都非常的完善。
Service执行方式的抽象——LocalDispatcher
该接口提供了ofbiz中service调度执行器基本协议方法的定义,包括:- 同步执行
- 异步执行(其实也是基于job加多线程)
- 定时执行(基于job以及job pool)
- 添加【提交/回滚事务时执行的】service
- 一些关键“传输对象”的访问器
LocalDispatcher的抽象实现——GenericAbstractDispatcher
- ctx:serviceengine的上下文对象
- dispatcher:ServiceDispatcher的实例,是真正的服务执行者
LocalDispatcher的标准通用实现——GenericDispatcher
如果你关注一下他们的返回值类型,你就能知道为什么之前提到LocalDispatcher是“业务代表”对象了。它将成为应用程序其他组件与service engine打交道的主要代理人(就跟entity engine层的Delegator接口一样),因此在这些方法中实例化的GenericDispatcher对象都向上转型为了LocalDispatcher。
因为它是关键对象创建它的代价比较大,考虑到性能因素GenericDispatcher为所有的dispatcher对象提供缓存。另外一个需要关注的是:GenericDispatcher大量依赖ServiceDispatcher(从其构造器需要注入ServiceDispatcher的实例就可以看出来)。或者你可以看到下面实现的所有的runXXX接口方法基本都是依赖ServiceDispatcher去执行的。真正的服务调度器——ServiceDispatcher
- protected Delegator delegator = null;
- protected GenericEngineFactory factory = null;
- protected Authorization authz = null;
- protected Security security = null;
- protected Map<String, DispatchContext> localContext = null;
- protected Map<String, List<GenericServiceCallback>> callbacks = null;
- protected JobManager jm = null;
- protected JmsListenerFactory jlf = null;
ServiceDispatcher的构造方式跟GenericDispatcher类似。都是将构造器设置为protected,对外通过静态方法获得实例,同时拥有对它自身实例对象的缓存。
其实,在业务系统中大部分的操作都是跟数据库打交道,而Delegator又是entity层的业务代表,所以ServiceDispatcher非常依赖于Delegator。
而服务最终到底是怎样被执行的呢?最终每个服务都是依赖于符合它执行条件的执行引擎来执行的!(关于各种引擎,后面会介绍)。上面的关键部件里有个GenericEngineFactory的实例,它用于创建合适的执行引擎。
下面简述一个通用服务的执行过程:- 定义或者初始化一堆执行过程中需要用到的参数
- 检测服务是否带有锁标识:如果有,则创建一个锁,并获得锁对象
- 创建一个上下文对象,如果服务的执行过程中需要携带参数,将参数都加入上下文对象
- 检测上下文对象的Locale
- 对当前service进行log
- 检测当前服务是否定义有event,如果有,一次全部取出
- 取得合适的执行引擎
- 更新上下文对象中,IN 类型参数的默认值
- 如果该服务被定义为在事务中执行,则启用事务
- 依次执行“global-rollback”、“global-commit”、“auth”相关event的action,并带出执行结果
- 检查pre-auth的执行结果是否为失败或错误
- 检查上下文对象中键值对参数的权限,同时设置【key为"userLogin"】的value为【用户信息对象】
- 检查userLogin对应的用户信息对象,如果权限验证失败,则抛出异常
- 执行“in-validate”预检查事件,同时带出对action的执行结果
- 检查是否有失败或错误产生
- 检查所有上下文参数中输入参数是否合法
- 执行“invoke”事件,同时带出action的执行结果
- 检查是否有失败或错误产生
- 通过服务执行引擎来执行服务并取得执行结果
- 通过服务执行引擎发送服务回调,如果执行结果不为空,则将其加入result结果集
- 检查是否有错误或失败产生
- 错误处理
- 重新构建一个eca的上下文对象
- 执行“out-validate”事件,同时带出结果集
- 验证结果集中得输出参数是否合法
- 执行“commit”事件,同时带出结果集
- 检测结果集是否含有失败或者错误
- 执行“global-commit-post-run”事件,同时带出结果
- 进入异常处理部分:通过服务引擎,发送带异常的回调,回滚事务
- 进入finally部分:如果有错误,回滚事务,否则提交事务,调用notification,这里的事件是由结果集来决定的
- 进入外层finally部分:如果锁没有被释放,则释放锁。恢复父级事务
- 执行“return”事件,同时带出结果集
- 返回结果集,方法结束
服务调度的上下文——DispatchContext
异步请求器——GenericRequester
该接口定义了两个回调方法:一个用于接受一个map(通常是上面serviceDispatcher的执行结果),另一个接受一个Throwable对象。它主要的用途就是在调用runAsync方法的时候(异步执行服务),将该接口的实现者作为参数传入(可以理解为回调对象)。主要的过程是这样的:
首先,ServiceDispatcher实例调用runAsync方法,在该方法接受一个GenericRequester类型的参数,在方法内部真正的执行引擎会调用它自己的runAsync方法,该接口的实例继续向前传递作为参数。而执行引擎对该runAsync的实现主要在GenericAsyncEngine中,实现的方式是这样的:它最终会用GenericRequester的实例以及一些其他对象创建一个我们下面会提到的GenericServiceJob的实例。最终所谓的Async只不过是转化为了其他线程去独立执行一个Job而已,在该job的exec方法中,dispatcher会同步执行runSync,然后得到结果,提供给GenericRequester调用(上面截图中得方法)。因此这里所谓的runAsync其实是在另外一个独立的线程上去执行runSync,然后将结果传递给回调对象,执行回调方法而已。Service中的任务——Job
从之前的继承关系图可见,它实现了Job接口,并对其进行了一定的扩展。它提供了一个带两个参数的构造方法,用于注入jobId/jobName。并额外定义了两个protected的 成员变量:runtime/sequence。
对于最关键的exec方法,此处仍然将其标记为abstract,以待继承者实现。通用服务Job的异步执行类——GenericServiceJob
- dctx: DispatchContext类的实例
- context: Map<String, Object>的实例
同时还通过构造器注入了GenericRequester类的一个实例,来达到它异步获取结果的目的。
在exec方法的实现中,它首先通过dctx获得LocalDispatcher类的实例。然后通过调用其runSync的实例方法来获得一个Map的结果对象。如果执行结果出现错误,则进入错误处理流程,否则通过GenericRequester的实例requester来接收结果。大致的方式就是在另一个线程上同步执行服务。
在此基础上,GenericServiceJob又定义了一个public方法:getServiceName,后面我们会看到它的继承类会override该方法。对持久化的job的调度执行——PersistedServiceJob
该类实现了entity service job。支持将job持久化到数据库中,然后经过调度再执行。这里牵扯到数据库中的一张表:JOB_SANDBOX(该表位于数据库ofbiz中)。它用于存储持久化到数据库中的job信息。
因此该类的构造函数包含一个GenericValue类型的实例,用来表示JOB_SANDBOX中的一条job信息(在之前的讲ofbiz entity engine的文章中,我们提到过GenericValue,它用于表示一个通用的数据实体)。
queue方法的实现:
首先,它调用父类的queue方法(父类的实现,没有什么特别的意义)。然后它通过重新获得该job对象,并显式刷新它(以防缓存等导致数据不一致),如果产生异常,则直接将runtime设置为-1,在AbstractJob中对isVaild的实现么,如果runtime小于0,则该方法返回false。接着,如果通过了验证,我们还需要check该job的“cancelDateTime”、“startDateTime”属性,如果它们两个其一不为null则说明该job不可用(已经执行过了),仍然将runtime设置为-1。否则就设置startDateTime,statusId并将其持久化到数据库。
另一个关键方法exec,在这里没有被override,而是沿用父类的实现。但该类提供了很多私有的辅助方法,来处理相关逻辑。比如如何初始化,如果重试,如果处理失败以及完成逻辑。job调用执行器——JobInvoker
JobInvoker专门用于执行job。它提供多个接口用于对job的执行进行控制,包括:开启执行、停止执行、唤醒、杀死执行线程、以及提供对一系列执行参数的获取。它实现了Runnable接口,可见它利用多线程技术来执行job。
构建它需要至少一个参数:JobPoller的实例(JobPoller是后面要谈到的job的轮询器)。
来看下它的构造方法:- public JobInvoker(JobPoller jp, int wait) {
- this.created = new Date();
- this.run = true;
- this.count = 0;
- this.jp = jp;
- this.wait = wait;
- // service dispatcher delegator name (for thread name)
- String delegatorName = jp.getManager().getDelegator().getDelegatorName();
- // get a new thread
- this.thread = new Thread(this);
- this.name = delegatorName + "-invoker-" + this.thread.getName();
- this.thread.setDaemon(false);
- this.thread.setName(this.name);
- if (Debug.verboseOn()) Debug.logVerbose("JobInvoker: Starting Invoker Thread -- " + thread.getName(), module);
- this.thread.start();
- }
在初始化了相关参数之后,它将自身实例用于构造它的内部thread变量,在将线程显式设置为非daemon之后,即刻启动该线程的执行。这种构建方式可以使得从对象被创建开始,它就以一个独立的线程开始运行,同时因为该thread成为它的一个内部成员变量,它拥有对该thread的完全控制权。
在正常情况下,run方法内运行着一个while循环,它首先从jobPoller获得下一个待执行的job,如果为空(代表暂时没有等待执行的Job)则进入等待状态。如果获取到Job则执行。持久化Job的轮询器——JobPoller
JobInvoker负责job的调用执行,在jobinvoker中我们看到它是通过jobpoller的next方法获得即将执行的job的。所以,真实提供job的是JobPoller!
在JobPoller内部维护着两个关键变量:- pool:一个“线程池”,它是List<JobInvoker>类型的,前面提及到因为JobInvoker是一个独立的线程,所以pool是它的一个集合。
- run:是一组待运行的job集合
在构建jobPoller的时候,通过构造方法注入一个JobManager的实例(在run方法中,真正获取job的就是JobManager的实例)。在初始化相关参数之后,JobPoller以跟JobInvoker相同的方式启动线程。
线程启动,执行run方法,它首先睡眠30s(这可以让它等待jobManager重新加载crashedjob)。然后通过jobManager获取一组joblist。将他们一个个入队,如果产生任何异常则执行stop动作。
下面我们来看入队流程:
首先,它将当前处理的job加入上面的run变量中。然后根据当前run的size以及pool的size重新计算是否需要扩大pool(创建新的jobInvoker,来增加吞吐量)。
另外pool里的每个jobInvoker实例都是从jobpoller的next方法获得job,而next方法就是从run集合里删除并返回一个job。
pool的初始化是通过createThreadPool方法来完成的。它会创建最小数量的JobInvoker,而上面我们也提到过,JobInvoker是创建即执行的线程。job 的控制中心——JobManager
上面有提到过JobManager,事实上它是 “传输对象”模式的应用。它集成了JobPoller/Delegator等关键对象来完成对job的管理。
提供的功能包括:触发运行一个job、获取job list、以及创建schedulejob、获取job执行的相关运行时信息、对job执行器的控制等。
引擎的接口抽象——GenericEngine
是时候关注serviceengine中那些默默无闻的工作者——服务执行引擎。上面说到ServiceDispatcher是真实的执行服务的所在地,其实,说到最后它还是借助于这些引擎来完成的!
GenericEngine定义了引擎的一些契约方法,主要包含了服务的同步/异步调用。以及发送服务回调方法。抽象执行引擎——AbstractEngine
- dispatcher:ServiceDispatcher的实例
- locationMap:一个map,用于存储servicename跟该service的location之间的对应关系
JMS服务引擎——JmsServiceEngine
- runTopic - 以jms的“topic”模式运行(publish/subscribe)
- runQueue - 以jms的“queue”模式运行
- runXaQueue - 以jms的“xaQueue”模式运行
通用异步引擎——GenericAsyncEngine
它将runSync的一系列重载方法标识为“Abstract”,只实现了runAsync相关的方法。
简单来理一下对runAsync方法的实现:
如果该服务/job是需要持久化:
它首先往数据表RUNTIME_DATA中插入一条数据,并将上下文对象序列化入字段“runtimeInfo”。同时往表JOB_SANDBOX中插入一条数据
如果无需持久化,它直接构建一个GenericServiceJob的实例运行job。Entity服务引擎——EntityAutoEngine
SOAP客户端引擎——SOAPClientEngine
脚本引擎——ScriptEngine
服务组引擎——ServiceGroupEngine
标准Java方法服务引擎——StandardJavaEngine
Groovy脚本服务引擎——GroovyEngine
HTTP 引擎——HttpEngine
该引擎用于执行httppost请求,并返回请求结果。
该service的location是其URL。通过传递该service的location以及相关的参数,构造一个HTTPClient的实例来触发post请求。
BeanShell引擎——BeanShellEngine
BSF 引擎——BSFEngine
XML RPC引擎——XMLRPCClientEngine
Rmi 服务引擎——RmiServiceEngine
RmiServiceEngine的实现借助于ofbiz的RemoteDispatcher。顾名思义,它是一个remotedispatcher,但它只是定义了远程方法调用的接口。
RmiServiceEngine先通过service的location查找到属于该service的RemoteDispatcher然后调用它的runSync方法。通用消息监听器——GenericMessageListener
- close:关闭listener以及所有的连接
- load:启动listener以及所有的连接
- refresh:刷新连接
- isConnected:判断连接是否可用
Jms listener的抽象实现——AbstractJmsListener
AbstractJmsListener实现了GenericMessageListener以及j2ee的ExceptionListener接口。
在构造方法中,它初始化了一个LocalDispatcher类的实例。
对onMessage方法,它在接受到message之后,首先判断它是否是MapMessage的实例,如果是则运行runService方法。
而runService方法接受的参数就是最终在onMessage中拆封服务信息的message,然后通过localDispatcher执行。
refresh方法的实现非常简单,先close然后再load
onException方法在产生异常的时候将会被触发。首先,它先将当前连接的状态设置为close状态。然后一直不停得调用refresh方法,直到isConnected方法返回true。当然,一旦产生异常就会睡眠10秒钟。Jms topic listener——JmsTopicListener
jms将消息传递模式分为两大类:topic/queue,其中topic模式支持publish/subscribe。
JmsTopicListener继承自AbstractJmsListener,重新实现了两个方法:- close:除了关闭连接,它还需要关闭topicsession
- load:做一些初始化动作,同时开始建立连接
Jms queue listener——JmsQueueListener
Jms listener创建工厂——JmsListenerFactory
JmsTopicListener与JmsQueueListener的构造器的注释中说明了:建议不要自己手动创建它们,而是通过JmsListenerFactory来创建。
JmsListenerFactory实现了Runnable接口,因此它利用的是多线程技术。在它的构造器中,他就会启动自身实例的run方法,并将自身设置为非daemon线程。在启动之后,它会根据xml定义,去创建listener。另外,它还定义了关闭/刷新listener的方法。
远程调用的dispatcher接口——RemoteDispatcher
之前我们谈到ofbiz支持的众多service engine中就有一个RmiServiceEngine,它用于远程方法调用。而它的执行则依赖于RemoteDispatcher。
之所以最开始我们介绍的“业务代理”称之为LocalDispatcher,就是为了跟这边的RemoteDispatcher以示区别。
RemoteDispatcher实现了JDK提供的Remote接口(该接口未提供任何接口方法的定义,属于标记接口)。在RemoteDispatcher中定义了一系列运行service的方法:RemoteDispatcher的直接实现者——RemoteDispatcherImpl
服务锁实现的关键——ServiceSemaphore
- fail
- wait
- none
- value - 这个是当前锁的entity对象
- delete - 标识是否删除锁的bool值
整个对锁的数据访问操作都被包裹在事物中,根据delete来判断是删除还是创建锁。
对锁检查看是否需要等待的逻辑实现在方法:checkLockNeedToWait中。首先从数据库中去获取当前model对象的锁,如果没有则创建(创建即表示当前service拥有了锁)并返回false。如果找到则返回true表示需要等待该service的锁被释放。
而具体对等待还是失败信号的处理位于方法waitOrFail中,如果当前servicemodel支持的是fail信号,则直接抛出一个异常;如果支持wait信号则在允许范围内不断尝试检测该service的锁是否被删除。直到超时或者锁从数据库中删除,如果是因为超时则抛出一个异常。
好了,谈了这么多,上面的这些方法都是为两个主要的公共方法服务的:- <service name="lookupRoutingTask" engine="java"
- location="org.ofbiz.manufacturing.techdata.TechDataServices" invoke="lookupRoutingTask" auth="true">
- <description>Only used to defined the query lookup for Routing Task</description>
- <attribute name="workEffortName" type="String" form-display="true" form-label="${uiLabelMap.ManufacturingTaskName}" mode="IN" optional="true"/>
- <attribute name="fixedAssetId" type="String" form-display="true" form-label="${uiLabelMap.ManufacturingMachineGroup}" mode="IN" optional="true"/>
- <attribute name="lookupResult" type="List" mode="OUT" optional="false"/>
- </service>
其中的attribute节点就是服务的参数节点,而该节点信息映射到程序中的model就是ModelParam。
实现服务接口的定义——ModelServiceIface
- <service name="basicGeneralLedgerPermissionCheck" engine="simple"
- location="component://accounting/script/org/ofbiz/accounting/permissions/PermissionServices.xml" invoke="basePermissionCheck">
- <description>Basic General Ledger Permission Checking Logic</description>
- <implements service="permissionInterface"/>
- </service>
响应所有服务的消息通知——ModelNotification
该实体类封装了位于${project_base}/framework/service/config/serviceengine.xml中的关于通知分组的定义。
所谓的通知组(notificationgroup)可用于响应所有服务的消息(目前只支持sendMailFromScreen的响应方式)。通常情况下通知可以邮件的形式发出,所以其拥有处理邮件相关属性的方法比如获取from、to、cc、bcc等属性。发出通知的关键方法是:callNotify(它会构建通知的上下文,然后运行sendMailFromScreen服务).service编程级别的权限实现——ModelPremGroup/ModelPermission
- <required-permissions join-type="AND">
- <check-permission permission="SERVICE_INVOKE_ANY"/>
- </required-permissions>
其中:required-permissions节点名称用于表示一个权限组的节点,在程序中用ModelPremGroup表示。
它内部可以包含多种权限,比如:- check-permission
- check-role-member
- permission-service
服务的权限在这里对应的model是:ModelPermission。
当然permission-service权限不一定要包含在ModelPremGroup里,它也可以独立存在。这里,可以简单理解ModelPremGroup是ModelPermission的集合,与此同时ModelPremGroup还存储了ModelPermission之间的join关系(and /or)这个可以理解为多条件的逻辑表达式。
ModelPremGroup只包含一个关键方法:evalPermissions。它会根据join关系以及每个ModelPermission得出的bool结果计算最终的逻辑表达式结果。有点类似权限1join 权限2join 权限3(join:and / or)
而具体对每个权限的验证则在ModelPermission里通过方法:evalPermission完成。
它是一个对外的接口,内部有四个私有方法分别用于计算不同的权限:关于ECA——Rule& Condition & Action
除了普通的service还有一种广泛使用的基于事件和条件触发的service。它就是——SECA(Service event condition action)。来理解一下怎样的场景会使用这样的service。首先需要了解,它是基于事件或者规则触发的。我们来看一个场景描述:当你离开房间的时候,看一下有没有下雨,如果下雨了,带着伞。这里e就是:当你离开房间时,它表示一个事件。c就是看看是否下雨了,它表示触发的条件。a就是:带着伞,这就是action。
在ofbiz的业务系统中包含非常多的eca。它们都定义在:${project_baseDir}/applications/${project}/servicedef/secas.xml中。
我们来关注一下它在service层的表现方式。
对于某个eca的定义在service层对应的model为:ServiceEcaRule,它拥有一个名为eavl的方法,用于计算所有condition的值。
触发的条件对应的model为:ServiceCondition。它也包含一个名为eval的方法,用于计算当前Condition的值(Condition可能为某个service也可能为计算表达式)。
对于action的抽象,对应的model为:ServiceEcaAction。它包含一个runAction方法,用于执行action(其实action也是某个service)。
eca package中还包含一个工具类:ServiceEcaUtil,它定义了一些辅助方法。
一个常见的eca定义形如:- <eca service="updateCreditCardAndAddress" event="in-validate">
- <condition field-name="expMonth" operator="is-not-empty"/>
- <condition field-name="expYear" operator="is-not-empty"/>
- <action service="buildCcExpireDate" mode="sync"/>
- </eca>
服务定义的解析器——ModelServiceReader
运行时的Service实体——RunningService
服务相关的辅助类——ServiceUtil
该类对运行时服务提供事务支持,它继承自我在上篇文章中谈到的entity engine中的GenericXaResource(底层依赖于Java自带的事务机制)。
毫无疑问,有些服务根据其业务特性,他们需要事务的支持,比如在事务commit或rollback时我们需要去执行特定的服务。ofbiz service engine也对事务进行了支持。事务的终结大概分为两种方式:commit/ rollback。
我们来看看ServiceXaWrapper是如何支持事务的。
两个关键方法:它们负责触发事务不同的终结动作,但并不真正去执行事务,而是收集它需要的一些字段信息(比如服务的名称,服务需要的上下文参数,服务的运行模式是同步还是异步),然后再开启一个独立的线程去以事务的机制执行特定的服务方法。
commit以及rollback所收集的那些字段是通过什么方法设置的?ServiceXaWrapper对外提供了多个重载的setter:通用的服务model——ModelService
跟之前一篇讲解entity engine里提及的ModelEntity一样。这边的ModelService也是作为传输对象,而不仅仅只是一个model。当然了,之前所提及的Service定义文件里的一些属性的model也被加入到ModelService中来。另外一个值得关注的是ModelService实现了AbstractMap,这也表明了它自身还是一个map(map中包含的成员都是服务定义文件中的服务节点的属性以及子节点)。
ModelService大概包含这样几类方法:- AbstractMap 定义的方法
- 提供对modelservice中各种属性不同的筛选以及获取方法
- 对数据的验证方法
- 对权限以及消息通知的计算