我的创作纪念日

机缘

在我成为创作者的初期,心中充满了对分享和交流的渴望。最初,身处于一个快速发展的技术领域,我常常感到信息的不足和学习过程中的迷茫。作为一名程序员,我经历了许多实战项目,其中积累了不少经验。在这个过程中,我意识到,如果能将自己的经验和所学及时分享给他人,不仅能帮助他人,也能进一步巩固自己的知识。

我的创作初衷主要源自于以下几个方面:

实战项目中的经验分享:每当我完成一个项目,都会遇到一些难题,通过解决这些问题,我收获了不少经验。我希望通过文章将这些经验分享出来,以帮助更多处于困境中的同道中人。

日常学习过程中的记录:学习不仅仅是学校里接受教育的过程,而是一个持续的体验。我开始将自己的学习过程进行记录,不论是挫折还是成功,这些都成为了我创作的重要素材。

通过文章进行技术交流:我希望能通过这些文章与更多的技术同行进行交流,互相学习,讨论技术实现的不同思路和方法。

通过上述原因,我决定在自己的空闲时间开始写作,记录我的学习和工作过程,分享我的经验与思考。

收获

在创作的过程中,我感受到了许多意想不到的收获。创作不仅让我自己得到了成长,同时也让我收获了来自他人的支持与鼓励。

我开始没有关注粉丝数量,但随着时间的推移,我发现自己的粉丝数逐渐增加,目前已经有了 [4000] 位粉丝的关注。每当看到他们的关注与评论,我都感到无比欣慰。

在创作过程中,我收获了许多正向的反馈。从最初的几条评论,到现在每篇文章都有上百的赞和评论,这些反馈让我更加坚定了继续创作的信心。

认识和哪些志同道合的领域同行:
通过创作,我认识了许多志同道合的朋友,大家在交流过程中共同探讨技术问题,分享各自的经验,这种互相学习的氛围让我感到无比快乐。

提升了自己的表达能力和技术能力:通过写作,我的技术能力有了很大提升,同时也锻炼了我的逻辑思维和表达能力。在整理文章结构、撰写内容的过程中,我逐渐学会了如何将复杂的技术问题简单化的表达,让更多人易于理解。

日常

目前,创作已经成为我生活中不可或缺的一部分。虽然我的工作和学习任务繁重,但我一直在努力寻找平衡点,让创作与我的工作、学习相辅相成。

创作是否已经是你生活的一部分了:
在忙碌的工作之余,我总会抽出时间来进行创作。这不仅让我感受到快乐,也让我得以将工作中的学习与创作结合起来,形成良性循环。

有限的精力下,如何平衡创作和工作学习:有时我会遇到精力不足的问题。为了应对这些挑战,我会制定创作计划,将工作和学习任务合理分配时间。利用周末或晚上安静的时间进行集中创作,使我能更高效地进行写作。

受挫经验的分享:
创作的过程中难免会遇到瓶颈和挫折,每当这时,我都会选择从中吸取教训,并将这段经历写成文章,分享给读者。这种分享不仅能帮助他人,也让我找到了解决问题的新思路。

成就

在过去的创作中,最令我有成就感的,莫过于开通付费专栏后,大量的粉丝订阅。虽然我的收入可能并不高,但是这些收入是我继续创作下去的动力,也是我这辈子目前最有成就感的事情。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TxNet.Ltd.

你的赞同是对我的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值