月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。
注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有3种月饼,其库存量分别为18、15、10万吨,总售价分别为75、72、45亿元。如果市场的最大需求量只有20万吨,那么我们最大收益策略应该是卖出全部15万吨第2种月饼、以及5万吨第3种月饼,获得 72 + 45/2 = 94.5(亿元)。
输入格式:
每个输入包含1个测试用例。每个测试用例先给出一个不超过1000的正整数N表示月饼的种类数、以及不超过500(以万吨为单位)的正整数D表示市场最大需求量。随后一行给出N个正数表示每种月饼的库存量(以万吨为单位);最后一行给出N个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。
输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后2位。
输入样例:
3 20
18 15 10
75 72 45
输出样例:
94.50
这道题需要判断每种月饼的单价,需要先卖出单价高的,然后再卖出单价低的,需要注意库存不能设为int型,需要设为double或者float型
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct mooncake{
double have;
double sale;
double danjia;
};
bool cmp(mooncake m1, mooncake m2)
{
return m1.danjia > m2.danjia;
}
int main()
{
int kind, need;
double sum1 = 0;
double sum2 = 0;
int i;
mooncake num;
vector <mooncake> m;
cin >> kind >> need;
for ( i = 0; i < kind; i++)
{
cin >> num.have;
sum1 += num.have;
m.push_back(num);
}
for ( i = 0; i < kind; i++)
{
cin >> m[i].sale;
sum2 += m[i].sale;
m[i].danjia = m[i].sale / m[i].have;
}
if (sum1 <= need)
printf("%.2f", sum2);
else
{
sort(m.begin(), m.end(), cmp);
sum1 = 0; i = 0; sum2 = 0;
while (sum1 < need)
{
sum1 = sum1 + m[i].have;
sum2 = sum2 + m[i].sale;
i++;
}
if (sum1 > need)
{
i--;
sum1 = sum1 - m[i].have; sum2 = sum2 - m[i].sale;
sum2 = (need - sum1)*m[i].danjia + sum2;
}
printf("%.2f", sum2);
}
return 0;
}
本文介绍了一种算法,用于计算在给定各种月饼库存量、总售价及市场需求的情况下,如何通过选择最优组合来实现最大收益。该算法首先计算每种月饼的单价,然后按单价从高到低排序,依次销售单价较高的月饼,直至满足市场需求。
255

被折叠的 条评论
为什么被折叠?



