主成分分析

1人阅读 评论(0) 收藏 举报
分类:
查看评论

机器学习之k近邻学习器和降维与度量学习

-
  • 1970年01月01日 08:00

主成分分析;介绍主成分分析,介绍主成分分析,介绍主成分分析,介绍主成分分析,

  • 2010年03月23日 13:29
  • 189KB
  • 下载

深入理解主成分分析PCA原理

1 概述 真实的训练数据总是存在各种各样的问题: 1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。 ...
  • Mr_HHH
  • Mr_HHH
  • 2018-01-02 20:42:28
  • 315

数据分析-主成分分析

用Excel做主成分分析,计算特征值特征向量
  • afujin
  • afujin
  • 2016-02-25 11:34:45
  • 1084

主成分分析(PCA)算法的简单推导和实例

问题1:为什么要降维?    我们在处理实际问题的时候,进行特征提取过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,消耗计算资源。   问题2:降维的方法有哪些? 特征降维一般分为两类:特征提...
  • weixin_37824397
  • weixin_37824397
  • 2017-03-10 13:49:31
  • 2753

主成分分析PCA详解(一)

降维的必要性 1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。 2.高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上...
  • u012102306
  • u012102306
  • 2016-06-20 17:55:13
  • 3309

概率主成分分析

前面介绍了主成分分析,概率主成分分析是对主成分分析在概率上的一种推广。 概率的引入,为主成分分析带来极大的好处。下面简单介绍概率主成分分析的 导出以及和主成分分析的关系。 在概率主成分分析里面,假设预...
  • lijiankou
  • lijiankou
  • 2013-10-31 23:31:18
  • 982

python主成分分析实战案例

PCA主成分分析主要用于数据降维。由一系列特征组成的多维向量,其中某些元素本身没有区分性,或者彼此区分不大。此时,如果用它做特征区分,相似元素贡献会比较少。我们目的是找到那些变化大的元素,即方差较大的...
  • huozi07
  • huozi07
  • 2015-04-29 14:49:18
  • 1281

主成分分析简单例子

一、数据降维     对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数,即...
  • weixin_38208741
  • weixin_38208741
  • 2017-10-13 22:19:16
  • 1898

PCA(主成分分析)的数学原理

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降...
  • sinat_32974931
  • sinat_32974931
  • 2016-04-25 09:39:42
  • 2627
    个人资料
    等级:
    访问量: 1万+
    积分: 383
    排名: 20万+
    文章分类
    最新评论