(整理资料所得,非原创,原作者亦不可知了)
康托展开
百度百科中对康托展开是这样解释的——{1,2,3,4,...,n}表示1,2,3,...,n的排列,如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321,代表数字 1 2 3 4 5 6,也就是把10进制数与一个排列对应起来,他们间的对应关系可由康托展开来找到。简单的说就是求一个排列数在所有排列中是第几小的。当然,要实现这个功能,途径有很多,比如我们把所有的排列都找出来,然后排个序,二分查找……
德国数学家康托(应该不会重名吧)发现其实可以又更简单高效的算法来解决这个问题:例如我们求35412在{1,2,3,4,5}的生成的排列中是第几小的:
第一位是3,第一位比3小的排列数肯定小于35412,比3小的有1,2;共2个数,所以有2*4!;
第二位是5,同理,比5小的有1,2,3,4;因为3已经在前面出现了,所有还有3个比5小的,3*3!;
第三位是4,比4小的有1,2,3;3在前面出现了,还有2个比4小的数,2*2!;
第四位是1,没有比1小的数,所以是0*1!;
最后一位无论是几,比它小的数在前面肯定都出现了,所以有0*0!;
所以,比35412小的排列数共有:2*4!+3*3!+2*2!+0*1!+0*0!=70,35412是第71小的数。
康托展开有什么用处呢?因为这种映射是一对一的关系,不会产生冲突,因此它在hash应用中有不错的表现。所以,作为排列数的hash映射是康托展开的主要应用,USACO 3.2.5 Magic Squares就是一个很好的应用
康托展开的公式
把一个整数X展开成如下形式:
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!
其中,a为整数,并且0<=a[i]<i(1<=i<=n)
康托展开的应用实例
{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。他们间的对应关系可由康托展开来找到。如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。2*2!+1*1!是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
康托展开的代码实现
后文的PASCAL程序经检验可以正确工作,并指示出了一个简洁的计算方法,和前文的运算思路略有不同,不需要检验某数码是否使用过,只需检查第(n+1-i)位之后比第(n+1-i)位小的位的数量,将这个数量作为公式中的a[i]。(1<=i<=n)
并附此算法C++版本。
康托展开的代码(C++语言):
unsigned long cantor(unsigned long S)
{
long x=0,i,p,k,j;
bool hash[8]={false};
for (i=8;i>=2;i--)
{
k=S>> 3*(i-1);
S-=k<<3*(i-1);
hash[k]=true;
p=k;
for (j=0;j<=k-1;j++)
if (hash[j])
p--;
x+=fac[i-1]*p;
}
return x;
}
康托展开的代码(Pascal语言):
s为数组,用来存储要求的数,形如(1,3,2,4)。
n为数组中元素个数。
fac[x]为x!
*function cantor:longint:;
*var
* i,j,temp:integer;
* num:longint;
*begin
* num:=0;
* for i:=1 to n-1 do
* begin
* temp:=0;
* for j:=i+1 to n do
* if s[j]<s[ i ] then inc(temp);
* num:=num+fac[n-i]*temp;
* end;
*cantor:=num+1;
*end;
康托展开的代码(C语言):
//参数int s[]为待展开之数的各位数字,如需展开2134,则s[4]={2,1,3,4}.
int fac[]={1,1,2,6,24,120,720,5040,40320,362880};//...
long cantor(int s[],int n){
int i,j,temp,num;
num=0;
for(i=1;i<n;i++){
temp=0;
for(int j=i+1;j<=n;j++){
if(s[j]<s[i]) temp++;
}
num+=fac[n-i]*temp;
}
return (num+1);