菲波那切数列

原文链接:http://blog.sina.com.cn/s/blog_5cf754db0100crdu.html


“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及叙利亚希腊西西里普罗旺斯研究数学

  斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
  这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)【√5表示根号5】
  很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……

  如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

  5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。如果所有的数都要求是自然数,能找出被任意正整数整除的项的此类如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成数列,必然是斐波那契数列的某项开始每一项的倍数,如4,6,10,16,26……(从2开始每个数的两倍)。

  斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

  斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:

  1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1

  2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)-1

  3.f(0)+f(2)+f(4)+…+f(2n)=f(2n+1)-1

  4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)

  5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1

  6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)

  7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)

  8.f(2n-1)=[f(n)]^2-[f(n-2)]^2

  9.3f(n)=f(n+2)+f(n-2)

  在杨辉三角中隐藏着斐波那契数列

  1

  1 1

  1 2 1

  1 3 3 1

  1 4 6 4 1

  ……

  过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8……

  (1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。

  (2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。

  斐波那契数经常与花瓣的数目相结合:

  3………………………百合和蝴蝶花

  5………………………蓝花耧斗菜、金凤花、飞燕草

  8………………………翠雀花

  13………………………金盏草

  21………………………紫宛

  34,55,84……………雏菊

  (3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

  (4)斐波那契数列与黄金比值

  相继的斐波那契数的比的数列:

  它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。

【与之相关的数学问题】  1.排列组合.

  有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

  这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……

  1,2,3,5,8,13……所以,登上十级,有89种

  2.数列中相邻两项的前项比后项的极限.

  就是问,当n趋于无穷大时,F(n)/F(n+1)的极限是多少?

  这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是所谓的黄金分割点,也是代表大自然的和谐的一个数字。

  3.求递推数列a(1)=1,a(n+1)=1+1/a(n).的通项公式.

  由数学归纳法可以得到:a(n)=F(n+1)/F(n).将菲波那契数列的通项式代入,化简就得结果。

【斐波那挈数列通项公式的推导】  斐波那契数列:1,1,2,3,5,8,13,21……

  如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

  F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

  显然这是一个线性递推数列。

  通项公式的推导方法一:利用特征方程

  线性递推数列的特征方程为:

  X^2=X+1

  解得

  X1=(1+√5)/2, X2=(1-√5)/2.

  则F(n)=C1*X1^n + C2*X2^n

  ∵F(1)=F(2)=1

  ∴C1*X1 + C2*X2

  C1*X1^2 + C2*X2^2

  解得C1=1/√5,C2=-1/√5

  ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

  通项公式的推导方法二:普通方法

  设常数r,s

  使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

  则r+s=1, -rs=1

  n≥3时,有

  F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

  F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

  F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

  ……

  F(3)-r*F(2)=s*[F(2)-r*F(1)]

  将以上n-2个式子相乘,得:

  F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

  ∵s=1-r,F(1)=F(2)=1

  上式可化简得:

  F(n)=s^(n-1)+r*F(n-1)

  那么:

  F(n)=s^(n-1)+r*F(n-1)

  = s^(n-1) + r*s^(n-2) + r^2*F(n-2)

  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

  ……

  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

  (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

  =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

  =(s^n - r^n)/(s-r)

  r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

  则F(n)=(√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值