A1121. 回文数
时间限制:
1.0s 内存限制:
256.0MB
试题来源
NOIP1999 提高组
问题描述
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=10或N=16)进制数M(其中16进制数字为0-9与A-F),求最少经过几步可以得到回文数。
如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=10或N=16)进制数M(其中16进制数字为0-9与A-F),求最少经过几步可以得到回文数。
如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
输入格式
两行,N与M
输出格式
如果能在30步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
样例输入
9
87
87
样例输出
STEP=6
解析:需要注意的是,读入的数可能为16进制数。在这里我采用的是用一个数组来存储数字m的每一位,这样每次相加时,只需要将数组的顺序与逆序相加就能得到新的数。
代码:
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#define maxn 100
using namespace std;
int n,a[2][maxn];
char s[maxn];
bool huiwen(int x)
{
int i,j,k;
i=1,j=a[x][0];
for(;i<j;i++,j--)
if(a[x][i]!=a[x][j])return 0;
return 1;
}
void readdata()
{
int i,j,k;
scanf("%d%s",&n,s);
k=strlen(s);
for(i=k-1;i>=0;i--)
{
if(isdigit(s[i]))j=s[i]-'0';
if(islower(s[i]))j=s[i]-'a'+10;
if(isupper(s[i]))j=s[i]-'A'+10;
a[0][++a[0][0]]=j;
}
if(huiwen(0)){printf("STEP=0\n");exit(0);}
}
void add(int x)
{
int i,j,k,last,y=1-x;
a[x][0]=a[y][0];
for(last=0,i=1;i<=a[y][0];i++)
{
j=a[y][0]+1-i;
a[x][i]=a[y][i]+a[y][j]+last;
last=a[x][i]/n,a[x][i]%=n;
}
if(last>0)a[x][++a[x][0]]=last;
}
int main()
{
readdata();
for(int i=1;i<=30;i++)
{
add(i%2);
if(huiwen(i%2)){printf("STEP=%d\n",i);return 0;}
}
printf("Impossible!\n");
return 0;
}
本文介绍了一个算法,用于解决给定N进制数M最少需要几步操作变为回文数的问题。通过数组存储数的每一位并实现逆序相加,判断结果是否为回文数,若30步内无法达成则输出特定信息。
3139

被折叠的 条评论
为什么被折叠?



