yuzhiarchy
码龄16年
关注
提问 私信
  • 博客:4,787
    社区:1
    4,788
    总访问量
  • 3
    原创
  • 1,398,550
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2009-04-11
博客简介:

yuzhiarchy的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得2次评论
  • 获得11次收藏
创作历程
  • 2篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 深度学习相关
    1篇
  • 机器学习算法
    1篇
  • 机器学习相关
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于二分类问题评估指标的补充——对ROC-AUC的一些解释

对于ROC和PR曲线的优缺点,下面这篇博文说的比较清楚,我就不赘述了。机器学习之类别不平衡问题 (2) —— ROC和PR曲线AUC,ROC我看到的最透彻的讲解上面这篇博客中有一段文字:“AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值”。在网上搜了一下,感觉没有通俗的解释。所以,本文尝试对此...
原创
发布博客 2019.04.01 ·
731 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

SVM-对偶问题、核技巧、RBF、参数gamma和C

一、SVM背景知识 二、我的补充和参数理解 参考文献 1. 周志华. 机器学习. 北京:清华大学出版社,2016. 2. SVM核技巧之终极分析. https://www.cnblogs.com/Wanggcong/p/4878141.html 3. SVM的两个参数 C 和 gamma. https://blog.csdn.net/lujiandong1/a...
原创
发布博客 2018.09.07 ·
2962 阅读 ·
3 点赞 ·
1 评论 ·
4 收藏