kmp hdu-1711

2 篇文章 0 订阅
     kmp让自己意识到自己到底是有多么的水.纠结了好几天,终于对kmp算是有了一个比较浅显的认识.
    打开任何一篇关于kmp的文章后,你都会接触一个叫做next数组的东西,其实,不管七大姨八大姑,kmp的关键就是求一个字符串的前缀和后缀的最大公共长度,不知我说的准确吧,那么我们就应该找出与此有关的东西来.我们以"ababaca"为例尝试着计算next数组.
    首先我们先了解一下前缀后缀的概念.
    前缀:除最后一个字符的所有字符组合;后缀:除第一个字符的的所有字符组合.
"ababaca" 前缀为
    
    "a,ab,aba,abab,ababa,ababac"
    后缀为
    "a,ca,aca,baca,abaca,babaca"
不要被迷惑,这只是指向 第6个(从0开始)字母a的前缀,那么我们可以数数只有a自己相同,所以next[6]=1;我们现在将指向"ababaca"中第四个(从0开始)a,它的前缀为:"a,ab,aba,abab",后缀为"a,ba,aba,baba",前后对比一下,"aba"就是,也就是3了.依次类推,下面我是摘自  stackoverflow的解答,我们推得这个字符串的next[]为
# | String | P(#) | Longest matching prefix-suffix
0 | "a" | 0 | ""
1 | "ab" | 0 | ""
2 | "aba" | 1 | "a" -- a b a
3 | "abab" | 2 | "ab" -- ab ab
4 | "ababa" | 3 | "aba" -- ab a ba
5 | "ababac"| 0 | ""
6 |"ababaca"| 1 | "a" -- a babac a

    我们将next数组计算出来以后,其余的就好说了,在匹配的时候,总的思想还是kmp数组的算法思想.

即便说到这,当时我还是死活看不懂,用手找个例子运行一下.

--------------------------------------------------------------------------------------------------------------------------------

hdu 1711只是适合这个思想,题目稍微简单,哎,做个字符串的题目真是难受,就是简简单单的字符串输入输出就搞得头大,看来得花费一定的时间将它处理好.

总共提交了4次,通过这次我有点理解为什么zoj上的那道题不对了,不要用大数组作为函数的参数,虽然我现在讲不出理由,但直观的想想,即使传址来回跑多累,

#include<iostream>

#include<cstdio>
using namespace std;
int text[1000010];
int pattern[10010];
int n,m;
int next[10010];
void getnext()
{
	int k=0;
	next[0]=0;
	int i;
	for(i=1;i<m;i++)
	{
		while(k>0 && pattern[k] != pattern[i])
		{
			k=next[k-1];//k就是前缀后缀最长的数目
		}
		if(pattern[i]==pattern[k])
		{
			k++;
		}
		next[i]=k;
	}
}
int kmp()
{
	int i,q;
	getnext();
	q=0;
	for(i=0;i<n;i++)
	{
		while(q>0 && pattern[q] != text[i])
			q=next[q-1];
		if(pattern[q] == text[i])
		{
			q++;
		}
		 if(q == m)
		{

			return i-m+2;

		 break;
		}
	}
	return -1;

}
int main()
{
//	freopen("in.txt","r",stdin);
	int i;
	int kcase;
	
	scanf("%d",&kcase);
	while(kcase--)
	{
		scanf("%d%d",&n,&m);
		for(i=0;i<n;i++)
			scanf("%d",&text[i]);
		for(i=0;i<m;i++)
			scanf("%d",&pattern[i]);

		if(n<m)
		{
			printf("-1\n");
			continue;
		}
		getnext();
			printf("%d\n",kmp());
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值