电机V/F控制,开环矢量控制(SVC),闭环矢量控制(FVC)三者区别

V/F控制模式:

       V/f控制就是保证输出电压跟频率成正比的控制这样可以使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生,多用于风机、泵类节能型变频器用压控振荡器实现 。

       V-F控制的原理是产生一个震荡频率的电路叫做压控震荡器,是一个压敏电容,当受到一个变化的电压时候它的容量会变化,变化的电容引起震荡频率的变化,产生变频。把这个受控的频率用于控制输出电压的频率,使得受控的电机的转速变化。

        异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

       那什么时矢量控制呢,矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

  其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

 

开环矢量控制模式(SVC):

       虽说它叫开环矢量控制,但它其实不是真正意义上的开环,因为这种控制方式下,其转速外环还是存在的,只不过这个时候,转速反馈值不是电机的真正转速反馈值,而是变频器根据电机模型算出来的转速值作为反馈信号。电机不带转速反馈装置,变频器依靠自身内部软件中的转速观测器,来计算出电机转速。从而达到对电机转速的控制。它本质上是一种“不带转速反馈的闭环控制”。

闭环矢量控制模式(FVC):

       如果调速系统对电机转速的控制精度要求非常高,且需要进行位置或者转矩控制,并对转矩的稳定性、精度也有要求,那就需要进行闭环矢量控制,这时你的电机一定要配编码器(PG),而带编码器的矢量控制方式下,转速反馈值是编码器测出的实际转速值,是真正的电机转速,不是变频器自己算出来的。

  开环矢量控制最终和闭环一样,也是改变变频器的脉冲电压波形,只是因为没有编码器的速度反馈,是通过电流环的电流传感器反馈一个电流信号到微处理器,来参与矢量运算,从而实现电机的矢量控制。

  要说调速系统的开环控制的话,其实V/F(变频变压)控制是才可以说是真正的开环控制,这时变频器对电机转速完全不能控制,它只输出一个固定频率、固定幅值的电压,而不管电机此时转速为多少。

  转速闭环调速系统中控制器默认的是PID控制,不过一般都把微分控制功能关闭,采用比例积分PI调节器控制。而且PID控制器是变频器内置的,速度环PID控制器是不需要我们用户外配的。

 

已标记关键词 清除标记
<p> </p><p> 数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本课程将深入浅出、全面系统地介绍了这门学科的内容。通过这门课程,同学可以了解并熟悉如下的开源工具:scikit-learn、statsmodels、TensorFlow、Pyspark等。 </p> <p> 本课程分为4个部分,18个章节。 </p> <p> ·             第一部分是最初的3章,主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 </p> <p> ·             第二部分是第4-7章,主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 </p> <p> ·             第三部分是接下来的8-15章,主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。 </p> <p> ·             第四部分将覆盖目前数据科学最前沿的两个领域分别是大数据和人工智能。具体来说,第11章将介绍大数据中很重要的分布式机器学习,而最后两章将讨论人工智能领域的神经网络和深度学习。 </p>
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页