《AI大模型应知应会100篇》强烈推荐-加餐篇:AI Agent正当时!2025年必须了解的8个国内外AI Agent工具框架!

AI Agent正当时!2025年必须入手的8个国内外AI Agent工具框架!(新手科普篇)

如今,人工智能领域正迎来“智能体(AI Agent)”的火热浪潮。AI Agent 指的是基于AI大模型底座技术,能够自主感知环境、决策并执行任务以实现各种计算目标的人工智能软件系统,简单来说,它就像赋予计算机自己动手完成复杂任务的能力,从整理信息、调用工具到与人互动都不在话下。2025年,各种国内外的 AI Agent 工具框架如雨后春笋般涌现,帮助开发者快速构建属于自己的智能体应用。本文将以通俗有趣的方式,带你认识 8个当前主流的AI Agent框架/平台,包括它们的特色亮点、应用场景、适合人群,以及一个个简单易懂的案例示范(含代码和输入输出讲解),让新手也能快速上手。赶紧系好安全带,我们的AI Agent探险之旅现在开始!

1. LangChain – 模块齐全的LLM应用开发框架

在这里插入图片描述

LangChain 的核心架构模块示意:包括模型I/O(LLMs及提示模板)、数据连接(文档加载、向量库、检索)、记忆模块,以及代理Agent模块等。它通过高度抽象的组件,将各环节解耦,方便开发者自由组合。

LangChain 可以说是近两年崛起最快的AI应用开发框架之一,被誉为大语言模型(LLM)时代的“标准库” 。它支持 Python 和 Node.js 两大主流语言,提供了丰富的模块组件,让我们可以用拼积木的方式快速搭建复杂的 AI 应用 。无论是对话问答智能搜索,还是需要长时间运行、多步骤推理的任务,LangChain都能轻松应对。

  • 特色亮点:LangChain 最大的特色在于模块化和灵活性。它将与 LLM 交互涉及的各个部分(如模型接口、提示模板、记忆、工具调用等)都进行了高度抽象和封装 。开发者既可以直接使用内置的现成链(Chain)和代理(Agent),也可以根据需求继承基类来自定义。这种设计使我们能够方便地集成外部数据源(如数据库、文件、API)、增加长期记忆,以及使用各种**工具(tools)**扩展 LLM 的能力。例如可以接入检索库让AI具备查询知识库的本领,或接入计算工具让AI计算数学题等等 。同时,LangChain 社区非常活跃,新功能更新快,有大量教程和模板,可谓“生态繁荣”。这对新手来说尤为友好,有问题一搜一大把解决方案。

  • 典型应用场景:由于其通用性,LangChain 几乎适用于所有需要LLM驱动的应用。例如:

    • 智能问答助手:结合知识库或搜索引擎,构建能回答专业领域问题的对话Agent。
    • 数据处理流水线:将多个步骤的文本处理用Chain串联起来,如“文档摘要->翻译->生成报告”一气呵成。
    • 任务自动化:利用Agent让AI自主决定调用哪些工具来完成复杂任务,比如先搜索再计算再总结。
    • 多轮对话系统:与记忆模块结合,让AI在长对话中“记住”先前上下文,提供连续一致的回答。
  • 适合人群:LangChain 非常适合希望快速上手LLM应用开发的工程师。如果你已有一定编程基础,想把大语言模型能力融入自己的项目,如客服问答、内容生成等,LangChain会是顺手好用的工具。其清晰的抽象也适合进阶玩家深入定制。当然,初学者第一次接触可能会被众多概念(Chain、Agent、Memory等)绕晕,建议先跟官方教程跑通几个Demo,理清模块间关系再动手,不然容易踩坑。

  • 常见误区:新手用LangChain经常会遇到提示不当导致Agent乱用工具或者记忆混乱的问题。这通常是因为没有设计好 prompt 模板或没有正确维护对话状态。要避免踩坑,务必参考官方示例来编写提示,逐步调试代理决策流程。此外,由于LangChain封装了大量调用,出现错误时栈信息较深,调试时可以打开 verbose=True 模式查看Agent的思考过程(Chain of Thought),方便分析。

案例:用LangChain构建一个简单计算Agent

下面我们用LangChain创建一个带有计算能力的智能Agent,回答像“一年有多少小时?”这样的提问。这个Agent会判断需要计算,并调用内置的计算工具来完成。代码示例(Python):

from langchain.agents import load_tools, initialize_agent
from langchain.llms import OpenAI

# 初始化OpenAI模型(假设已设置OPENAI_API_KEY环境变量)
llm = OpenAI(temperature=0)  
# 加载一个计算器工具(llm-math),用于数学计算
tools = load_tools(["llm-math"], llm=llm)
# 初始化Agent,指定使用React描述策略
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)

# 用户提问
question = "一年有多少小时?"
result = agent.run(question)
print(result)

运行上述代码,可以看到LangChain的Agent先“思考”如何求解,识别出需要计算24*365,接着自动调用计算工具得到结果,并最终回答:

一年大约有 8760 小时。

上面的 verbose=True 会打印Agent的推理步骤,例如它会先输出类似“我应该用计算器”,然后调用工具并返回结果,最后给出答案。

这个例子中,我们只需简单几行代码就让AI学会了用计算器,大大简化了开发难度!如果读者已经有OpenAI API密钥,不妨亲自试试这个小Demo,加深对LangChain Agent工作原理的理解。

2. AutoGen – 多智能体协作框架(微软出品)

在这里插入图片描述

AutoGen 支持多个智能体协作完成任务。上图展示了一个 AutoGen 代理协作示例:助手Agent(绿框)利用LLM编写Python代码,用户代理(蓝框)可以在带有人类监督的“沙盒”中执行代码并返回结果。这种“AI助理+工具执行”模式使智能体能自主编写并运行代码来解决问题(如绘制股票价格曲线),遇到错误还能迭代改进。

如果说LangChain主要侧重单个智能体调用工具完成任务,那么 AutoGen 则将目光投向了多个智能体之间的协作。AutoGen是由微软亚洲研究院联合宾夕法尼亚州大等机构于2023年10月开源发布的框架 。它的设计初衷是帮助开发者创建由多个LLM智能体互相交流、分工合作来完成复杂任务的应用。例如,一个智能体负责提出问题,另一个负责写代码,还有一个负责审阅结果,彼此对话协作,就像一个小团队一样 。

  • 特色亮点:AutoGen 的核心亮点在于多Agent协作代码自主生成执行 。它允许我们整合不同能力的语言模型,让多个Agent组成一个网络,每个Agent可以有自己的角色(如“分析师”、“编码员”等)。这些Agent通过异步消息通信,可采用事件驱动或请求/响应的模式互动 。尤其值得一提的是,AutoGen中的Agent可以自动产生代码并让另一个Agent执行,甚至能调试代码结果 ——这对需要解决复杂工程问题、数据分析任务非常有帮助。此外,AutoGen还支持可插拔的自定义组件,开发者可以定制自己的Agent种类、工具接口、记忆模块等,框架会负责Agent之间的对话管理(GroupChat) 。总之,AutoGen为多智能体互助提供了一个灵活的舞台。

  • 典型应用场景:AutoGen 可以大展身手的场景通常是复杂且需要多步骤推理的问题,例如:

    • 编程问答与代码生成:一个Agent根据用户需求生成代码,另一个Agent负责运行代码检验结果,再由前者修正,直到得到正确答案 。这在自动调试、数据分析脚本生成等方面很实用。
    • 多角色对话系统:模拟专家小组讨论问题。例如在医疗诊断场景下,不同Agent扮演医生、患者、专家,各自贡献信息,协作得出诊断结果。
    • 任务规划与执行:一个Planner Agent负责拆解任务并分配给执行Agent,各Agent分别完成子任务再汇总结果。这类似于项目管理,有助于完成复杂流程型任务。
    • 人机混合回路:AutoGen也支持在关键步骤让Agent询问人类反馈(Human in the loop),确保在自动执行中人类可以干预重要决策,保证可靠性。
  • 适合人群:AutoGen适合对多智能体交互感兴趣的中高级开发者。如果你已经玩转了LangChain这类单Agent框架,想更进一步探索“Agent和Agent之间如何合作”,AutoGen提供了很好的实验平台。研究者也可用它模拟社会中的多智能体协同行为。不过对完全的新手而言,AutoGen概念和使用门槛略高,需要一定的并发编程和异步思维基础,初次上手要花时间理解其协作模型。

  • 常见疑难点:由于多Agent的对话是异步且复杂的,新手常碰到对话死锁信息丢失等问题。比如Agent之间相互等待对方回应、对话无法推进。这通常需要仔细设计每个Agent的交流协议和停止条件。另外,让AI自动编写并执行代码也存在风险,如生成有害指令或陷入调试循环。为此AutoGen提供了消息过滤和人类审批机制,开发者应该善加利用,在关键步骤加入人工确认以避免意外。此外,调试多Agent系统本身不易,建议先从两个Agent的小规模交互开始调试,逐步扩展,利用日志仔细观察每个Agent的思考过程,找到问题所在。

案例:两个Agent协作完成简单计算

为了演示 AutoGen,我们构造一个双智能体协作的小例子:Assistant Agent 负责生成计算代码,User Proxy Agent 负责执行代码并返回结果,两者协作求和 1 到 100 的结果。

from autogen import AssistantAgent, UserProxyAgent, GroupChat, GroupChatManager

# 创建一个助理Agent,擅长Python计算
assistant = AssistantAgent(name="assistant", system_message="你是一个善于计算的AI助理。")
# 创建一个用户代理Agent,具备代码执行能力
user_proxy = UserProxyAgent(name="user", code_execution_config={
   "work_dir": ".", "use_docker": False})

# 将两个Agent加入群聊会话
chat = GroupChat(agents=[assistant, user_proxy], messages=[])
manager = GroupChatManager(groupchat=chat)

# 助理Agent提出任务:计算1+2+...+100
assistant.prompt = "请计算从1加到100的结果。"
manager.step()   # user_proxy 接收到请求,生成并执行Python代码
manager.step()   # assistant 获取执行结果并形成回答

# 打印助理Agent给出的最终答案
print(chat.messages[-1]["content"])

运行此代码,Assistant Agent 会让 User Proxy Agent 在后台执行一段Python代码来计算 1 到 100 的和。最终,Assistant Agent 返回的答案为:

5050

整个过程中,两个Agent各司其职:助手负责提出计算任务,用户代理负责用代码计算并反馈。开发者无需亲自编写求和代码,真正实现了AI代理自主协作完成任务!这个示例虽然简单,却体现了AutoGen强大的多智能体协同和工具调用能力,为更复杂的应用奠定了基础。

3. CrewAI – 多角色协作的开源Agent框架

在这里插入图片描述

CrewAI 框架:允许多个“角色扮演”的AI Agent协同工作,每个Agent有自己的角色设定(蓝色方块)和目标任务(绿色方块),由流程管理器(Process)协调执行。可以使用伪代码展示创建两个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带娃的IT创业者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值