P@K,MAP,MRR以及NDCG相关计算公式

本文介绍了信息检索领域的几个关键评估指标:Precision@K(P@K)、Mean Average Precision (MAP)、Mean Reciprocal Rank (MRR) 和 Normalized Discounted Cumulative Gain (NDCG)。详细阐述了它们的计算公式,包括AP的平均精度计算,MRR的概念,以及DCG和NDCG在评价排序效果中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P@K,MAP,MRR以及NDCG相关计算公式

Precision@K(P@K):
在这里插入图片描述
Average precision(AP) = average of P@K
上图中AP=1/3*(2/3+2/4+3/5)

MAP计算公式为:
在这里插入图片描述
+++++++++++++++
MRR:
在这里插入图片描述
+++++++++++++++
NDCG相关计算:

Cumulative Gain at rank n (CG):
在这里插入图片描述
Discounted Cumulative Gain (DCG):
(log2(1)=0所以rel1单独拎出来了)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值