8.6数模2012A 葡萄酒的评价

1.在这里插入图片描述
答:
(1)对数据进行正态性进行分析。参数检验要求样本来源于正态总体(服从正态分布),且这些正态总体拥有相同的方差,在这样的基本假定(正态性假定和方差齐性假定)下检验各总体均值是否相等,属于参数检验。当数据不满足正态性和方差齐性假定时,参数检验可能会给出错误的答案,此时应采用基于秩的非参数检验。
一个讲的很好的网站:(https://blog.csdn.net/championkai/article/details/80206704?utm_medium=distribute.pc_relevant.none-task-blog-baidulandingword-5&spm=1001.2101.3001.4242)

2.以酿酒葡萄的理化指标作X,以葡萄酒的质量作Y。利用主成分分析法进行降维,接着用得出的公式对葡萄进行评分从而进行分级

3.可以用pearson相关系数来衡量 。相关系数的绝对值越大,相关性越强:相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

4.和前面差不多 扯吧…

一个和我们思路比较相近的博客:https://blog.csdn.net/fengsigaoju/article/details/52204695

1.T检验、F检验之间的差异和关系
2.哪个结果更加可信
3.区分各种检验 以及检验的方法
4.两独立样本非参数检验做法

TensorRT是英伟达公司推出的一个高性能深度学习优化库,可以用于在生产环境中快速、高效地部署和加速计算机视觉模型。 在TensorRT8.6计算机视觉模型部署与加速教程录屏中,我会详细介绍以下内容: 1. TensorRT介绍:简要介绍TensorRT的特点、优势和适用场景。 2. TensorRT安装与配置:指导观众如何在他们的计算机上安装和配置TensorRT,包括硬件/软件要求以及安装步骤。 3. 模型准备:解释如何准备计算机视觉模型以便在TensorRT中使用,包括模型格式、预处理和后处理步骤。 4. TensorRT工作流程:介绍TensorRT的工作流程,包括构建引擎、优化和推理的过程。 5. 加速技术:介绍TensorRT提供的加速技术,包括深度优化、卷积和矩阵乘法加速等。 6. 性能分析与优化:教授观众如何使用TensorRT进行性能分析和优化,包括性能指标的解释和优化策略的推荐。 7. 实例演示:通过实际的计算机视觉应用案例,演示如何使用TensorRT加速模型推理过程并获得更高的性能。 8. Q&A环节:回答观众提出的问题,并提供有关TensorRT的专业建议和技术支持。 通过这个录屏教程,观众可以了解TensorRT的基本原理和实际应用,学习如何部署和加速计算机视觉模型。他们可以掌握利用TensorRT优化计算图的技巧,从而提高模型的运行效率和速度。最终,他们将能够在实际项目中成功应用TensorRT来实现快速而准确的计算机视觉任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值