幂乘算法及其应用

原创 2018年04月17日 20:05:07








//以递归的方法来更好的理解分治算法。不用递归可以直接用循环的形式来模拟幂乘算法。

#include<stdio.h>
int fun(int a,int n)
{
int r=0;
if(n==1) return a;
r=fun(a,n/2);
if(n%2==0) return r*r;
return r*r*a;



}
int main()


{
int a=4;int n=10;
int r=0;
r=fun(a,n);
printf("%d",r);
}



密码学 模n的大数幂乘的快速算法

  • 2011年04月17日 20:23
  • 455B
  • 下载

蒙哥马利算法-快速幂模

蒙哥马利幂模运算 - 简介 蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是 RSA加密算法的核心之一。 蒙哥马利幂模运算 - 特点及原理 蒙哥马利模乘的优点在于减少了取...
  • leolinsheng
  • leolinsheng
  • 2013-12-25 13:23:13
  • 6880

蒙哥马利幂模运算

蒙哥马利模乘的优点在于减少了取模的次数(在大数的条件下)以及简化了除法的复杂度(在2的k次幂的进制下除法仅需要进行左移操作)。模幂运算是RSA 的核心算法,最直接地决定了RSA 算法的性能。 ...
  • xinwen1995
  • xinwen1995
  • 2016-02-18 12:03:56
  • 893

RSA 平方-乘算法 与 快速幂

平方乘算法和快速幂是极为相似的两种快速计算aka^k的方法,其不同点在于处理二进制的顺序相反,方法也有所差异复,杂度都为log2(k)log_2(k)基本原理: aka^k,将kk表示为二进制形式则...
  • Forever_wjs
  • Forever_wjs
  • 2016-12-28 20:39:15
  • 1669

快速幂乘

快速幂乘用的是二分的思想 a^b%c,当b比较大时可将其分解 当b为偶数时,a^b%c=(a^(b/2)*a^(b/2))%c;当b为奇数时,a^b%c=(a^(b/2)*a^(b/2)*a)%c...
  • Cambridgeacm
  • Cambridgeacm
  • 2012-06-29 21:59:31
  • 4933

幂取模(分治策略)

输入正整数,a,n,m,输出a^n mod m的值。a,n,m 代码: #include #include int pow_mod(int a,int n,int m) { int ans=1;...
  • u011641865
  • u011641865
  • 2014-12-05 23:36:19
  • 325

RSA 中的平方-乘 ,模幂运算

考虑模指数,即计算形如的函数,在RSA密码体制中,加密和解密运算都是模指数运算。计算 可以通过c-1次模乘来实现,然而,如果c非常大,其效率会很低下。 著名的平方-乘可以把计算所需的模乘的次数降低。...
  • lovely_girl1126
  • lovely_girl1126
  • 2018-01-22 17:11:51
  • 113

大数运算之快速幂算法

转自作者: 夜せ︱深在网站上一直没有找到有关于快速幂算法的一个详细的描述和解释,这里,我给出快速幂算法的完整解释,用的是C语言,不同语言的读者只好换个位啦,毕竟读C的人较多~所谓的快速幂,实际上是快...
  • ppppublic
  • ppppublic
  • 2017-02-08 16:26:53
  • 850

加密算法基础- Montgomery(蒙哥马利)乘法介绍

Montgomery乘法是公钥算法实现中的一个核心算法,其主要作用是为模乘运算加速。 在公钥算法实现中,通常需要计算a mod M、a*b mod M、a^b mod M等,一般看见mod M,最直...
  • BjarneCpp
  • BjarneCpp
  • 2017-08-28 11:01:57
  • 1233

【算法学习】利用分治法计算x的n次幂

计算x^n,用普通的算法就是x乘n次的话,时间复杂度就是O(n) 利用分治法 x ^ n = x^(n/2) *x(n/2) ( n是偶数)   = x^((n-1)/2)*x^((n-...
  • tao20dage
  • tao20dage
  • 2016-07-17 23:42:38
  • 3540
收藏助手
不良信息举报
您举报文章:幂乘算法及其应用
举报原因:
原因补充:

(最多只允许输入30个字)