瓦瑟斯坦质心及其在纹理混合中的应用与高斯卷积的高效计算方法
在图像处理领域,纹理合成与混合以及高斯卷积是两个重要的研究方向。前者旨在将不同纹理进行融合以创造新的纹理效果,后者则是线性尺度空间理论和众多应用中的基础操作。下面将详细介绍相关的理论和方法。
瓦瑟斯坦质心在纹理混合中的应用
- 切片投影的定义 :切片投影(Sliced Projection)被定义为点云 $X(∞)$,其中 $X(k)$ 是收敛的,即 $S - Proj Y = X(∞)$。在二维示例中,切片投影在实践中非常接近正交投影 $Proj[Y ]$。
- 纹理合成与混合
- 多尺度定向分解 :考虑颜色纹理样本 $f_j \in R^{P×3}$,每个像素值是一个三维向量 $f_j(x) \in R^3$。使用一组原子 ${\psi_{\ell,n}} {\ell\in L,n}$ 对图像进行投影来进行纹理建模。采用可转向小波紧框架,原子 $\psi {\ell,n}$ 由二进尺度 $2^s$、方向 $\theta \in [0, \pi)$ 和位置 $2^sn \in [0, 1]^2$ 参数化。在数值实验中,考虑了 4 个二进尺度、4 个方向,以及一个粗尺度框架(低通残差)和一个高频框架(细节),总共有 $|L| = 4 × 4 + 2 = 18$ 个框架。
- 一阶统计混合
瓦瑟斯坦质心在纹理混合及高斯卷积计算应用
订阅专栏 解锁全文

1720

被折叠的 条评论
为什么被折叠?



