- 博客(283)
- 资源 (58)
- 收藏
- 关注
原创 5G-OAI核心网部署流程
本教程旨在讲解OpenAirInterface(OAI)的部署方法,接下来的系列内容将包含5G核心网的部署、OAI基站部署、OAI终端UE部署,openair1,openair2,openair3,openair4等源码详解,最终实现5G通信过程并通过抓包实现数据分析。
2023-03-27 10:17:50
2457
原创 Quartus Prime Lite Edition 使用教程(创建项目与仿真)V
Quartus Prime Lite Edition基础使用教程
2022-03-30 19:22:32
15319
13
原创 字节跳动27届实习生招聘【急】
国际商业化产品与技术团队支持字节跳动国际短视频业务的广告产品与变现技术,我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案,覆盖字节跳动海外所有用户产品,目前已在美国、加拿大、新加坡、欧洲、中东等国家和区域开展业务。在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。投递链接:https://job.toutiao.com/s/opnAHnybtdM。岗位类型:算法/后端/前端/客户端。心动不如行动,快来投递吧~
2026-01-26 17:13:45
41
原创 互联网秋招AI应用开发
编码模型是 RAG 的 “核心组件”,本质是 “将非结构化数据(文本、图像等)映射为低维 / 高维向量” 的工具,向量的相似度直接决定检索精度 —— 向量越能体现数据的语义 / 特征,检索结果越精准。GraphRAG 通过图结构知识表示和增量更新机制认知维度升级:从片段化理解到结构化认知,支持复杂推理应用场景拓展:从简单问答到企业级复杂分析 (金融风控、医疗诊断、法律推理等)运维效率提升:增量更新使知识库维护成本降低 90%,实现 "活的知识系统"
2025-12-19 00:37:26
649
原创 muti-Agent+RAG+KnowledgeGraph构建智能问诊系统的可行性分析
摘要:本文提出了一种融合多智能体协作(Multi-Agent)、检索增强生成(RAG)和知识图谱(Knowledge Graph)的前沿AI架构。该架构通过定义分诊台、内科医生、外科医生等角色化Agent,结合Neo4j图谱数据库的结构化关系推理和向量数据库的非结构化文档检索能力,形成完整的故障诊断解决方案。文章详细阐述了数据层构建方法、Agent角色定义及协作流程,并针对Text-to-Cypher转换、噪声过滤等关键技术难点提出优化方案。这种组合架构充分发挥了各组件优势:LLM的通用推理能力、RAG的记
2025-12-13 00:01:16
623
原创 Windows下安装Verilator(通过WSL)
本文介绍了在WSL2中安装Verilator的完整流程。首先需以管理员身份启用WSL2并安装Ubuntu,然后更新系统并安装基础依赖。提供两种安装方式:通过apt快速安装稳定版,或从源码编译获取最新版。重点说明了源码安装步骤,包括生成configure脚本、编译安装及可能遇到的依赖问题(如help2man缺失)。最后指导如何配置PATH环境变量确保使用新版本,以及通过VSCode Remote-WSL进行开发环境配置。整个流程涵盖了从系统准备到开发环境搭建的全过程。
2025-11-23 18:52:42
499
原创 微软MAI广告部门分布式机器学习框架研发实习生招聘
1. 掌握Python/C++编程语言,熟练使用TensorFlow/Pytorch等训练框架。1、参与分布式大模型训练框架研发,加速模型的训练和推理,提高训练的稳定性,确保模型的高效迭代;3. 有深度学习基本知识,熟悉LLM/SLM/Transformer/Bert等模型结构更佳。2、调研最新技术和性能调优工具,编写算子和CUDA内核,持续提升框架的资源利用效率和易用性;2. 善于分析、解决工程问题,具备良好的团队协作能力。微软MAI广告部门分布式机器学习框架研发实习生。3、完成算法团队的业务需求。
2025-11-04 16:47:26
164
1
原创 大模型应用开发面经
Transformer是一种基于自注意力机制(self-attention)的神经网络架构,由论文《Attention is All You Need》提出。其核心创新在于通过并行化的注意力机制替代传统的RNN/LSTM,有效捕捉长程依赖关系,并成为BERT、GPT等里程碑模型的基础架构。Transformer由多头注意力、位置编码、前馈网络等模块组成,支持编码器-解码器、仅编码器或仅解码器等多种变体。其应用已从NLP扩展到视觉(ViT)、多模态等领域,主要优势包括训练高效、建模能力强和架构通用性。当前最大
2025-10-19 15:38:39
778
原创 RAG检索增强生成技术学习
检索增强LLM(RAG)结合了传统信息检索和大语言模型优势,通过外部数据库为LLM提供实时、精准的上下文信息。相比传统LLM,RAG显著提升长尾知识处理能力,支持私有数据查询,保证信息新鲜度,并增强回答可解释性。其核心模块包括数据索引、查询检索和响应生成,支持文档检索、用户记忆增强和缓存优化三种模式。RAG无需修改模型参数即可实现知识更新,比预训练和微调方案更经济高效,尤其适合企业知识库、个性化咨询等场景,但需注意检索精度和数据治理等挑战。
2025-10-18 01:45:47
678
原创 RAG检索增强LLM学习
检索增强生成(RAG)技术通过结合信息检索与大语言模型,有效解决了LLM的幻觉问题和数据新鲜度问题。该技术利用外部数据库检索相关信息作为上下文,显著提升模型对长尾知识和私有领域问题的回答准确性,同时避免了私有数据泄露风险。实现RAG系统需要构建数据索引、查询检索和响应生成三大模块,涉及文本分块、向量嵌入、相似性搜索等关键技术。研究表明,相比直接增加训练数据或模型参数,RAG能以更经济的方式提升模型性能。尽管LLM上下文窗口不断扩大,但精心设计的检索环节仍不可或缺,因为提供少量精准信息比大量噪声信息更能提升回
2025-10-05 22:11:06
923
原创 LLM概念学习
本文概述了主流开源大语言模型(LLM)体系架构及关键特性。主要内容包括:1)主流开源模型如GPT、BERT、T5等系列的特点;2)PrefixLM与CausalLM的结构差异,前者融合编码解码器,后者仅用解码器;3)大模型训练目标为最大似然估计;4)涌现能力的成因及评价指标影响;5)Decoder-only结构成为主流的原因;6)复读机问题的产生机制及缓解策略;7)处理长文本的方法与限制;8)Bert、LLaMA和ChatGLM的适用场景选择;9)专业领域定制模型的必要性;10)扩展上下文窗口的技术方案。文
2025-10-05 20:42:22
871
原创 分词和词向量的学习记录
摘要:词向量是自然语言处理的基础技术,通过无监督学习将词语编码为向量表示。文章介绍了使用gensim和TensorFlow实现词向量训练的方法,包括模型训练、增量训练和词语相似度计算。重点讲解了Word2vec的两种算法(CBOW和Skip-gram)及其区别,并以Skip-gram为例详细说明了实现步骤:语料处理、词表制作、batch生成和模型训练。词向量训练关键在于批量数据的构建和模型优化,通过负采样技术将多分类转化为二分类问题,使用随机梯度下降进行优化。训练完成后可得到包含语义信息的词向量模型。
2025-09-29 23:38:15
1104
原创 RocketMQ 核心特性解析及与 Kafka区别
Apache RocketMQ 以其高性能、低延迟和事务消息支持,成为业务驱动场景的优选消息中间件,特别适合电商、金融等需要复杂逻辑和实时性的系统。Kafka 凭借高吞吐量和流式处理能力,适合日志流和大数据处理场景。KRaft 模式的引入使 Kafka 架构更简洁,但与 RocketMQ 的 NameServer 相比,KRaft 在资源占用和逻辑复杂度上并非更轻量。选择建议如果需要事务消息、低延迟和多 Topic 场景的稳定性能,选择 RocketMQ。
2025-09-22 17:37:11
608
原创 高频场景设计题思路汇总
摘要: 短链接系统设计:采用62进制字符集(a-z,A-Z,0-9)生成6-7位短码,推荐基于自增ID+进制转换的方案确保唯一性。系统通过Redis缓存热点映射,MySQL持久化存储,支持分库分表。流程包括长链接转换时的去重检查,以及短链接跳转时的缓存优先查询机制。 线程安全LRU缓存:通过工厂模式创建泛型缓存实例,基于LinkedHashMap实现LRU策略,使用ReentrantLock保证多线程安全。设计包含抽象基类处理核心逻辑,子类实现具体类型(Integer/String)缓存,工厂类提供统一创建
2025-08-09 16:47:34
839
原创 操作系统学习笔记
在操作系统中,和是处理器的两种运行状态,其核心作用是通过权限隔离来保护系统的稳定性和安全性。是操作系统资源分配的基本单位,是一个。每个进程拥有独立的内存空间、文件描述符、寄存器状态等系统资源,是一个独立的执行环境。例如:打开一个浏览器窗口,就是启动了一个进程;再打开一个终端,又启动了另一个独立进程。是进程内的,也是操作系统调度的基本单位(CPU 调度的最小单位)。一个进程可以包含多个线程,这些线程共享进程的内存空间和资源,但拥有各自独立的程序计数器、栈空间和寄存器状态。
2025-08-04 23:38:03
1271
原创 redis速记
摘要: 本文探讨了Redis缓存相关问题的解决方案及同步策略。1) 缓存穿透:指请求数据在缓存和数据库中均不存在,导致数据库压力骤增,可通过布隆过滤器、缓存空值、业务校验、限流等方法解决;2) 双写一致性:强一致性采用读写锁,最终一致性通过Canal监听binlog同步;3) 数据库优先更新:确保数据权威性,避免缓存更新成功但数据库失败导致数据错误;4) 延时双删:通过两次删除缓存减少脏数据,但存在性能损耗和不完全一致性;5) 持久化机制:RDB(快照恢复快但可能丢数据)和AOF(日志更完整但恢复慢);6)
2025-07-18 00:04:21
869
原创 Transformer架构学习
Transformer的核心逻辑是通过自注意力机制来完成对输入序列的建模;自注意力机制则是通过计算语句中各个位置的权重值来完成对输入sequence的区分和编码;而传统的RNN(循环神经网络)和CNN(卷积神经网络)对比Transformer则显得相对笨重;RNN一般用于处理序列数据,通过隐藏状态递归的传递消息,捕捉序列在一定状态时间变化下的逻辑变化,例如LSTM;而GNN一般是用于处理图结构数据,例如知识图谱等,通过节点间的相邻关系进行数据传递;Transformer底层逻辑核心:自注意力机制。
2025-06-02 20:31:50
734
原创 Neo4j初解
Neo4j 是目前应用非常广泛的一款高性能的 NoSQL 图数据库,其设计和实现专门用于存储、查询和遍历由节点(实体)、关系(边)以及属性(键值对)构成的图形数据模型。它的核心优势在于能够以一种自然且高效的方式表示和处理极其复杂的关系网络,从而克服传统关系型数据库(RDBMS)在多表 JOIN 查询中性能急剧下降的问题。也可以通过docker进行部署。
2025-04-17 01:19:29
1861
原创 Redis常问八股(一)
使用的是Redisson实现的读写锁。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。:缓存击穿的意思是,对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这个时间点对这个Key有大量的并发请求过来。当然,两种方案各有利弊:如果选择数据的强一致性,建议使用分布式锁的方案,但性能上可能没那么高,且有可能产生死锁的问题。:延迟双删,如果是写操作,先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据。
2025-03-08 15:31:41
857
原创 javaSE基础
Java 语言编写的程序,一次编译后,可以在多个操作系统上运行。3.4 默认是双精度,将双精度赋值给浮点型属于下转型(down-casting,也称窄化)会造成精度丢失,因此需要强制类型转换。会编译出错,由于 1 是 int 类型,因此 s1+1 运算结果也是 int 型,需要强制转换类型才能赋值给 short 型。从 Java 7 开始,expr 还可以是字符串,但是长整型在目前所有的版本中都是不可以的。从 Java 5 开始,Java 中引入了枚举类型, expr 也可以是 enum 类型。
2025-03-05 22:21:55
495
原创 分段锁和CAS锁
分段锁是一种锁粒度的优化策略,它将数据划分为多个段,每个段单独加锁,减少多个线程同时争用同一把锁的情况,从而提高并发性能。的原子操作,它用于解决并发问题,尤其是在高并发环境下避免使用传统的加锁机制。,通过比较内存中存储的值是否与预期的旧值一致,如果一致则将内存中的值更新为新值,否则不进行更新。CAS 操作通常是由硬件提供支持的,如在现代 CPU 中,CAS 被实现为一条指令。结构,尤其在大数据量的情况下,避免了大量线程同时争用一把全局锁的性能瓶颈。包提供了一些通过 CAS 实现的原子类,像。
2025-01-05 14:34:11
1156
原创 java集合类有哪些?
在 Java 中,集合类(Collection classes)是指用来存储、操作数据对象的一系列类。它们位于java.util包中,主要分为和三个类型,每个类型又包含不同的实现类。List是一个有序的集合,它允许元素重复,并且元素的插入顺序是被保留的。常用的ListArrayListArrayList。
2025-01-05 14:26:58
1361
原创 java中static和const和final的区别
staticstatic关键字用于声明类的成员(方法或变量)为静态成员。静态成员属于类本身,而不是类的实例。换句话说,静态成员可以通过类名直接访问,而不需要实例化对象。staticstaticstaticcount是静态变量,在两个Counter对象中共享,是静态方法,可以通过类名直接调用。final是一个多用途的关键字,它可以用于变量、方法和类的定义,分别具有不同的含义。finalfinalfinalfinalfinalfinalfinalfinalfinalPI被声明为final,因此它的值不能更改。
2025-01-04 23:08:35
1727
原创 java基础学习(接口和抽象类的区别)
抽象类 (abstract class)不支持多继承,一个类只能继承一个抽象类。可以有抽象方法,也可以有已实现的方法。用于为相关类提供共有的功能和代码重用。支持多继承,一个类可以实现多个接口。用于定义一组不相关类的共同行为。接口 (interface),可以有默认方法、静态方法。,并实现了它们的方法;它们都无法直接实例化。可以有实例变量,可变。
2025-01-04 22:21:29
497
原创 spring网关维度
现在list的限流规则为60秒内5次,而api维度的限流规则是60秒内限制为1次,list属于整个微服务架构,而login只属于api维度;它实际上是@Controller和@ResponseBody注解的组合,表示该类中的所有方法都会返回JSON、XML等格式的数据,而不是视图页面。list属于整个微服务架构,而login只属于api维度,当访问时,刚才存在网关维度的限流规则是60秒内5次,而api维度的限流规则是60秒内限制为1次;代表网关访问该服务时的限流规则;代表网关访问该接口时的限流规则;
2025-01-01 19:02:24
1016
原创 对三层架构的梳理(Controller、Service、Dao)
层通常包含实体类,它们代表数据库中的表结构。在这个示例中,我们会创建一个简单的。为了让 Spring Data JPA 工作,我们还需要一个数据库配置,通常通过。
2024-12-28 16:46:23
645
原创 知识图谱+RAG学习
GraphRAG(Graph-based Retrieval-Augmented Generation)是微软在2024年推出的一项开源技术,旨在通过结合知识图谱和检索增强生成(RAG)方法,为大型语言模型(LLM)的数据处理提供全新解决方案。GraphRAG在RAG的基础上加入图结构信息,使得模型不仅能“查找到正确答案”,还可以通过图分析理解“答案之间的关系”。GraphRAG支持跨领域的多模态数据整合,无论是文本、图像还是结构化数据,都能构建统一的知识图谱,并实现推理。
2024-12-23 23:01:55
850
原创 windows下kafka初体验简易demo
进入config文件夹,修改zookeeper.properties文件,找到dataDir=C:/kafka/data/zk,将地址填写为刚才的新建zk文件夹;资料汇总内有一个kafka文件资料包.tgz,解压后可得到下述文件夹kafka_2.13-3.9.0,资料汇总内还有一个jdk文件,直接下载即java版本;首先双击zk.cmd,启动zookeeper,再双击kafka.cmd启动kafka,需要注意的是关闭的时候需要先关闭kafka,再关闭zookeeper;至此,文件配置环节已经完成;
2024-12-02 20:55:53
1419
原创 数据中台关系梳理
而在加入了MDM后,对于ETL的数据抽取则归类为了两类,一类为基础数据的抽取,这一部分数据可以不通过业务内容提取,直接从MDM中获取;基于上述内容,由于各个烟囱式管理的数据内容形成了信息孤岛,而对于同一物料来说,他可能同时存在于CMS,SMC和ERP中,各自又有可能有自己的管理,容易造成数据不一致。增加完MDM主数据管理系统后,如果需要使用物料数据,则会通过MDM主数据管理系统进行内容分发,统一管理;为了让数据结合,需要制作BI系统,而在制作BI系统的时候,则会需要通过类似于ETL的数据抓取工具。
2024-11-25 21:59:15
525
neo4j-3.x-5.x统一集合,方便jdk1.8以及jdk21使用
2025-04-17
机器学习之——MNIST机器学习入门
2022-04-27
机器学习初步——TensorFlow在Linux操作系统下安装的整个过程(包括IDE)
2022-04-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅