212. 单词搜索 II【 力扣(LeetCode) 】

零、原题链接


212. 单词搜索 II

一、题目描述

给定一个 m x n 二维字符网格 board 和一个单词(字符串)列表 words, 返回所有二维网格上的单词 。

单词必须按照字母顺序,通过 相邻的单元格 内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。

二、测试用例

示例 1:

在这里插入图片描述

输入:board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
输出:["eat","oath"]

示例 2:

在这里插入图片描述

输入:board = [["a","b"],["c","d"]], words = ["abcb"]
输出:[]

提示:

m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j] 是一个小写英文字母
1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i] 由小写英文字母组成
words 中的所有字符串互不相同

三、解题思路

  1. 基本思路:
      通过字典树来对深度搜索进行剪枝。
  2. 具体思路:
    • words 的字符构建成字典树;
    • 深度搜索 board
      • 如果下标违法,则返回;
      • 如果该格子已经遍历过,则返回;
      • 如果字典树不存在该路径,则返回;【剪枝】
      • 如果字典树遍历到一个单词,则记录;
      • 将当前格子设置为 '#' ;【防止重复遍历】
      • 递归遍历邻居四个格子;
      • 恢复当前格子原本的内容;
    • 遍历字典树,将记录的单词存放到 ans 中;
    • 返回 ans

四、参考代码

时间复杂度: O ( m ⋅ n ⋅ 3 l − 1 ) \Omicron(m \cdot n \cdot 3^{l-1}) O(mn3l1) 【构建字典树和遍历字典树的复杂度都没有深度遍历 board 高,而深度遍历 board ,每个格子都进行深度递归,有 m ⋅ n m\cdot n mn 个格子,深度递归最长路径为单词最长长度 l l l,递归的复杂度为 4 ⋅ 3 l − 1 4\cdot 3^{l-1} 43l1
空间复杂度: O ( m n + k l ) \Omicron(mn+kl) O(mn+kl)【存放 board + 存放字典树】

struct Node {
    Node* next[26] = {nullptr};
    string word;
    bool flag;
    Node() : word(""), flag(false) {}
};
class Solution {
public:
    vector<vector<char>> m_board;
    vector<pair<int, int>> pos = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    int m, n;
    Node* root;
    vector<string> ans;

    void dfs(const int& i, const int& j, Node* p) {
        if (i < 0 || i >= m || j < 0 || j >= n) // 坐标不合法
            return;
        if (m_board[i][j] == '#') // 已经遍历过
            return;
        if (p->next[m_board[i][j] - 'a'] == nullptr)
            return;
        if (p->next[m_board[i][j] - 'a']->word.length() != 0) {
            p->next[m_board[i][j] - 'a']->flag = true;
        }

        char t = m_board[i][j];
        m_board[i][j] = '#';

        for (int x = 0; x < pos.size(); x++) {
            dfs(i + pos[x].first, j + pos[x].second, p->next[t - 'a']);
        }

        m_board[i][j] = t;
    }

    void setans(Node* p) {
        if (p->flag)
            ans.emplace_back(p->word);
        for (int i = 0; i < 26; i++) {
            if (p->next[i] == nullptr)
                continue;
            setans(p->next[i]);
        }
    }

    vector<string> findWords(vector<vector<char>>& board,
                             vector<string>& words) {
        m_board = board;
        m = board.size();
        n = board[0].size();
        root = new Node();

        // 构建字典树
        for (int i = 0; i < words.size(); i++) {
            Node* p = root;
            for (int j = 0; j < words[i].size(); j++) {
                if (p->next[words[i][j] - 'a'] == nullptr) {
                    p->next[words[i][j] - 'a'] = new Node();
                }
                p = p->next[words[i][j] - 'a'];
            }
            p->word = words[i];
        }

        // 确认是否存在
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                dfs(i, j, root);
            }
        }

        setans(root);

        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值