空间转录组学入门笔记

一、空间转录组学发展

1. Visium空间转录组

2019年,瑞典科学家Joakim Lundeberg 发明了spatial transcriptome技术,卖给了10X Genomics公司,完善后推出Visium作为商业化产品

Visium芯片是该技术的核心,共有4个样本捕获区,每个捕获区有将近5000个捕获点,每个点上都链接有带有标签序列的DNA链,每个点为55微米,每个点的圆心到隔壁点的圆心为100微米。(后面又推出11mm*11mm的芯片)

带有标签序列的DNA链:

Partial Read 1: 可以被PCR扩增引物结合的序列,起到PCR扩增接头的作用

Spatial Barcode:16个碱基的序列,一个区域内的每个spot,都有单独的spatial barcode,作用是识别位置,即可以根据一段read上的barcode来反推这条read来源于捕获区域的哪个spot

UMI:12个碱基的序列,每条DNA标签链,都有独特的UMI序列,目的是在建库时进行PCR扩增,UMI可以用于判断两条序列高度相似的reads是来自两个不同的原始cDNA链,还是来自于同一条原始cDNA链

poly(dT):30个碱基,与mRNA的poly(A)尾巴结合,并引导合成cDNA 链

实验过程中OCT包埋的新鲜冰冻切片被贴到芯片的捕获区域上,切片经过透化,切片中的mRNA被释放出来当mRNA上的poly(A)尾巴遇到芯片上标签链的poly(dT)后,进行互补杂交,在逆转录酶的作用下,逆转录出第一条cDNA,经过一系列的酶反应,得到第二链的cDNA链,该链带有mRNA 本身的序列,芯片标签链的序列,第二链的cDNA链经过一系列的酶反应,再经过PCR扩增,最后被构建成可以上机测序的文库,经过高通量测序后,再经过生物信息学分析,得到结果,如下图所示:

每个被覆盖到的点上都有相应的转录组数据,每个点的颜色,代表在进行聚类分析后,这个点被分在了哪个聚类簇中。

其限制因素如下:

这意味着在进行正式实验之前,要进行预实验来确定其透化条件,导致标准化程度低。同时因为要利用mRNA的ploy(A)作为统一的逆转录起点,这就要求mRNA的完整度较好,限制了样本类型,不能是石蜡样本(mRNA 有一定程度的降解)。一般细胞只有几个微米,而该技术的spot有55微米。

2. FFPE Visium

芯片不变,但使用探针对的杂交反应,每一对探针,都针对一个mRNA上相邻的两个位置,替代了上述逆转录反应,右侧探针有一个poly(A)尾巴,可与芯片上的poly(dT)序列互补杂交,如果样本中有这个这个探针对的目标mRNA,那么这个探针对就会杂交到目标mRNA的相邻位置上,在依赖RNA为模板的DNA连接酶的作用下,把相邻的两个探针连接成一条DNA链,这里用连接反应替代了逆转录反应(连接反应只需要有一小段目标mRNA的片段,就能作为模板完成连接反应)

在连接反应完成后,mRNA 被酶消化掉,对样本进行透化,连接好的探针就会从样本中渗透出来,渗透出来的探针链的poly(A)会与芯片中的标签链poly(dT)互补杂交,接下来聚合酶会把探针链进行延长,并在探针链上加上标签链的序列

新的探针链从芯片上洗脱,经过PCR扩增,成为高通量测序文库

对每一个目标基因的mRNA,平均设计三对杂交探针,针对人的panel,设计了18000个基因的54000个探针对,接近对全部mRNA 的检测。

该方法可兼容石蜡样本与OCT包埋新鲜冷冻样本

3. Visium HD

采用更小更密集的分布方式,不再采用spot方式排列,而采用正方形,在数据分析中,一般将相邻的4*4个小格子组合成一个大的格子,边长8微米,这样可以使其空间分辨率与细胞直径在同一个水平上了,依旧使用与FFPE Visium类似的探针对检测法,但只适用于石蜡样本

4. Xenium组织原位单细胞转录组分析

该方法不需要将核酸分子游离出来,得到的转录本的空间位置即为转录本原来所在的空间位置,光学分辨率为0.2微米,甚至可以到亚细胞结构。探针是自由的,组织是固定的

在探针设计上,探针的两端与目标基因目标位置上mRNA序列互补,在探针两端都杂交到目标位置后,连接酶将其两端连接成环,探针上有标签序列,即gene-specific barcode,上面含有能与荧光核酸链互补的序列,这样可以通过杂交后发出的光颜色来识别

然后加入依赖RNA模板的DNA连接酶,在目标mRNA起到连接模板的作用下,连接酶把探针的两端连接起来,使其成为环状单链DNA,然后加入DNA聚合酶和引物,引物吸附到环状的探针链上,聚合酶沿着环状的DNA探针,进行滚环复制,得到含有多个拷贝的原始环状探针,以增强荧光信号的强度,然后使用带有不同荧光基团的有特定序列的寡核苷酸链对样本进行杂交,读取探针上的信息。在经过多轮洗脱与杂交后,每个探针就会展现出一串特有的荧光编码,再把原来设计的探针标签对应相应的荧光编码,与上述得到的荧光编码进行比对,就能得到各个位置发出荧光的是哪一种探针,以及这个探针所针对的基因,最后可以推断出切片上各个位置展现出的是哪种基因的mRNA,即原位转录组的信息。当同时使用几百种探针进行检测,就能得到这几百种基因在空间上的表达信息,再进行细胞边界分割,就可以得到单细胞的表达信息

Xenium的检测依赖于探针panel,在panel的设计上,对每个目标基因的转录本,一般会设计8个探针,分别针对mRNA 的不同位置,每个panel包含的基因数量大概在200-300个左右。2024年,Xenium计划推出一个5000个基因的大panel

四种方法比对:

二、系统的比较基于测序的空间转录组方法

Systematic comparison of sequencing-based spatial transcriptomic methodsSystematic comparison of sequencing-based spatial transcriptomic methods | Nature Methods

目前,从空间转录组学技术实现方法来看,大致分为4类

1. 微阵列技术

10X Genomics公司的Visium技术:依赖探针probe杂交的,依赖poly(A)尾巴进行逆转录的

德运康瑞公司的DynaSpatial技术

2. 基于微珠的技术

Curio-Bio公司的Slide-seq技术

Harvard University的Slide-tag技术

Broad研究所开发的HDST技术

百迈客公司的BMKMANU S1000

这类技术是先合成大量微珠的库,每个微珠都带有各自特定的标签序列,微珠被撒到芯片上,然后被固定,所有的微珠位置和对应的空间序列,都通过高通量测序技术或荧光杂交显色,被事先标定。

在实验过程中,样本中的核酸链游离出来,遇到微珠上的标签链,经过反应,得到既带有微珠序列又带有基因序列的DNA链,制备为高通量测序文库,进行检测分析

3. 基于芯片上中带有标签链的DNA簇或DNA纳米微球技术

BGI的Stereo-seq技术

赛陆公司的Salus技术

Washington University的PIXEL-seq技术

DNA簇:先准备好DNA文库,其中每个分子都分别带有各自独特的标志性序列,把DNA文库撒到芯片表面,通过乔式PCR,在芯片表面形成DNA簇,每个DNA簇都带有标志性序列。通过DNA测序,确定表面上每一个DNA簇的独特序列和这个独特序列的分子簇所在的空间位置

DNA纳米球:准备一个DNA文库,每一个分子都分别带有一段各自的独特性标志性序列,接下来将DNA链转化为环状DNA分子,经过滚环复制,得到长链的DNA分子,卷绕起来,被称为DNA纳米球。每一个DNA纳米球,都带有从原始的那段标志性序列复制出来的许多个重复拷贝。许多个纳米球组成纳米球库。然后将DNA纳米球撒到芯片上,再经过一轮测序,确定每一个纳米球的空间位置和它的标志性序列。加入并连接上捕获寡核苷酸链,捕获寡核苷酸链上有poly(T)序列,用来与poly(A)序列杂交,以及UMI序列来确认分子身份,这样就得到了检测芯片。

样本检测:样本经过透化,使其RNA游离出来,当样本的RNA与芯片表面的核酸分子接触,用一系列的酶反应,生成出既有RNA的基因信息,又带有芯片表面的DNA簇或者DNA纳米球位置信息的DNA链,再制备成测序文库,经过二轮测序,得到结果

4. 基于微流体的技术

Yale University的DBiT-seq技术

分两次给样本中的核酸链打上二维坐标信息标签序列,将这些核酸链构建成测序文库,通过测序等等得到空间位置信息

详细步骤对比可见对应文献提出的表格:

Table 1: Table 1 Protocols used in different spatial transcriptomic methods (part 1)

Table 2: Table 2 Protocols used in different spatial transcriptomic methods (part 2)

5. 比较方法

Benchmarking reference tissues: 

易得、含有稳定特异的标志基因表达、有清楚的形态学结构

选用:

6. 比较内容

采用这11种技术对这3种样本进行了35个实验,他们built a standard benchmarking pipeline,如流程图所示。苏木精和伊红 (H&E) 图像中观察到不同方法之间高度一致的组织形态表明标准组织处理和切片程序能够在不同的实验中产生一致的结果。

下图可以明显看到不同技术的分辨率的高低以及对细节的展现。blackbar的长度表示500微米,这些spots都是根据spot中心和它们在芯片上的位置之间的距离来绘制的,点越小越密集代表其空间分辨率越高。

6.1 捕获效率

在小鼠脑部海马体中,挑选出各个样本的阿蒙角区域后,把对应于阿蒙角区域的测序reads进行分析。

b图是把目标区域测到的所有reads都进行分析,得到各种检测方法在各个测序深度时得到的有效UMI数量(测序中得到的、来源于独立的原始分子,可以扣除掉PCR扩增导致的重复reads),横轴是测序的reads数,纵轴是有效UMI。每种方法的测序深度都未能达到饱和。在同样的样本区域上,华大的Stereo-seq技术得到了最多的UMI数量

d图是降低采样量 (down sampling),使每种方法都能以相同的reads数,进行比较。图b中虚线的位置即为d中右图。当采用相同的测序数据量时,Slide-seq V2有最多的独立UMI

在小鼠胚胎的眼睛样本中,Visium用探针的方法,在降低采样量的比较中,有最多的有效UMI

 分析每个spot上的reads数与基因数量的关系,华大的Stereo-seq技术得到的结果每个点上的reads数与每个点上的基因数的关系更加明白直接。

特征区域与特征基因的表达

在海马体CA3区域,对于50*50微米范围内的3个特征基因的表达,Visium(probe), Slide-seq V2, DynaSpatial这三种方法具有最高的灵敏度

在胚胎眼睛的部分,对于这3个基因的表达,Visium(probe), Slide-seq V2, DynaSpatial这三种方法同样具有最高的灵敏度

6.2 空间分辨率与分子横向扩散的比较

参数:分子横向扩散。

其是对mRNA空间位置检测的准确性,因为切片中的核酸分子要扩散后游离出来,才能遇到芯片上的捕获核酸链,而分子横向扩散的距离,会降低分子对空间定位的精确度,所以需要控制并检测分子横向扩散这个指标。

作者在选定的区域对一个特定的基因进行作图,定量的分析所选区域浓度的“峰最高高度一半处的左侧半峰宽度left-width at half-maximum (LWHM)

在小鼠的嗅球样本中,作者挑选了Slc17a7作为标志基因(该基因预计会在僧帽细胞和丝状细胞中表达,并形成两个独特的层)。

在三种检测方法中,Pixel-seq 和slide-seq V1.5扩散最少

在三种低分辨率的方法中,Visium polyA保持了更加清晰的两个峰,DynaSpatial几乎很难分辨出两个峰

在小鼠大脑中,选取Ptdgs基因作为标志基因(该基因的转录本呈细线性在脑中分布)。

在Stereo-seq中,有严重的横向扩散,Slide-seq的横向扩散最少,其次是BMKMANU S1000

在大脑中,另选取Sst基因进行比较,a图为原位杂交方法下Sst基因的转录本分布,b为各方法检测到Sst基因在大脑中的转录本的分布,c图比较各种方法Sst基因转录本在空间上的分散程度的数值。

当使用华大的Stereo-seq时,空间的基因的转录本分布更加散乱

在眼睛中,选用Pmel这个基因作为标志基因(在黑色素细胞中有特异性表达,环绕晶状体形成一个环状),华大的Stereo-seq展示出最好的对横向扩散的控制,其次是Slide-seqV2,这一点与之前的两类组织中观察到的结果相反,这提示样本的类型对扩散过程、以及对mRNA的捕获会有影响。

同时,组织类型不同、透化时间不同对各种方法的分子扩散都有很大的影响。下图为不同方法使用不同的透化时间对切片进行透化,再进行核酸荧光染色和HE染色,可以看到不同的样本类型在不同的透化时间上,得到的透化结果都有很大的差异。

6.3 数据做聚类、标注的分析(下游性能比较)

下图显示了预期的,从内向外看,依次为晶状体、晶状体泡、神经视网膜细胞(不同位置有不同的细胞亚群)、黑色素细胞、喙侧为角质间充质细胞、尾侧为上皮细胞。这样的基本解剖结构形成了评估基准。

 这是各项技术实际在眼睛中检测到的细胞群,Stereo-seq和Slide-seq V2可以提供很好的对于每个点的区分,以达成对细胞亚群的注释,BMKMANU在对细胞状态的确认中受到挑战,特别是在确认黑色素细胞上有困难,可能是源于它明显的分子横向扩散。低空间分辨率的方法,包括Visium和DynaSpatial会在确认细胞类型时受限,这主要还是因为相对较低的物理分辨率。

同时,作者又分析了降低采样量对聚类结果的影响,如下图,横轴列出了全采样量的结果,纵轴列出了降低采样量的聚类结果。比较发现,降低采样量与全采样量他们的聚类结果差不多,影响不大。

除此之外,作者发现,snRNA-seq有助于注释空间转录组数据。a图,在Stereo-seq中,对上皮细胞的注释存在挑战,因为存在具有混合表达谱的未知细胞簇。左图为单纯使用空间转录组的数据得到的结果,右图中加上了snRNA-seq上皮细胞的投影,可以看到其表现出了更好的解析能力。b图,左图黑色素细胞混合在一起,右图加上snRNA-seq上皮细胞的投影后,有助于把黑色素细胞和上皮细胞分开。

血液污染对空间转录组的影响

作者使用Hba-a1基因作为例子,来评估血液污染造成的影响。Hba-a1基因是编码alpha珠蛋白,即编码血红蛋白中的一个亚基的基因,结果发现,Visium和DynaSpatial是受血液污染的影响最严重。其次为BMKMANU,有70%的点上有alpha珠蛋白基因的表达。

作者比较了各个检测技术能够找到的标志基因的数量。a图是比较晶状体和黑色素这两种差异很大的组织。b图量化的展示三种方法用不同的测序数据量找到的标志基因的数量,Slide-seq V2方法是最敏感的。c图是比较光敏视网膜神经节细胞类型1和类型4(pNR1, pNR4)这两种高度相似的细胞,d图是量化的结果,Slide-seq V2方法是最敏感的。所有的方法,都发现测序数据越多,就可以发现越多的标志基因,并且每一种方法都会分别找到独特的标志性基因。e图作者比较各个技术平台发现的标志基因的共同性,各个平台独特的标志基因比共同的标志基因更多。(蓝色与紫色为共同的标志基因,粉色为独特的标志基因)

作者还分析了细胞与细胞之间的通讯情况,即配体受体对的情况,但各种方法之间没有发现一致的结果。

7. 各种方法综合汇总

性能最高的方法排在最前面。 分辨率低于 20 μm 的方法更受青睐。 右图概述了所研究的 sST 方法的基本特征。 可负担性越低,表示该方法的价格越高。 CM,角膜间质;pNR,推测神经视网膜;LV,晶状体囊;OB,嗅球。

Reference: 陈巍学基因

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值