# Stable Matching Problem

### Problem

Assume that you are running a dating agency and haven men and nwomen as customers;

They all attend a dinner party; after the party

• every man gives you a list with his ranking of all women persent, and
• every woman gives you a list with her ranking of all men present

Design an algorithm which produces a stable matching:
a set of n pairs p = (m, w) of a man m and a woman w, so that the following situation never happens

for two pairs p = (n, w) and p’ = (m’, w’):

• man m prefers woman w’ to woman w
• woman w’ prefers man m to man m’

change to

Given n men and n women, There are $n! \approx (n / e)^{n}$more than exponentially many in n.

Therefore, it is necessary to find a stable matching algorithm in a reasonable amount of time(Gale-shapley algorithm).

### Gale-Shapley algorithm

• Produces pairs in stages， with possible revisions
• A man who has not been paired with a woman will be called free.
• Men will be proposing to woman.Women willl decide if they accept a proposal or not.
While (there exists a free man who has proposed to all women pick such a
free man m and have him propose to the highest ranking woman w on his
list to whom he has not proposed yet)
if no one has sproposed to w yet
she always accepts and a pair p = (m, w) is formed
else she is already in a pair p' = (m', w);
if m is higher on her perderence list than m'
the pair p' = (m', w) is deleted
m' becomes a free man;
a new pair p = (m, w) is formed
else (m is lower on her preference list than m')
the proposal is rejected and m remains free.

• Claim 1: Algorithm terminates after $\leq n^{2}$ rounds of the while loop
proof:

• In every round of while loop one man proposes to one woman
• every man can propose to a woman at most once
• thus every man can make at most n proposals
• there are n men, so in total they can make $\leq n^{2}$proposals

Thus the while loop can be executed no more than $n^{2}$ many times

• Claim 2: every man is eventually paired with a woman(vice versa to woman)
proof:

• Assume that the while While loop has terminated, but m is still free.
• This means that m has already proposed to every woman.
• Thus, every woman is paired with a man, because a woman is not paired with anyone only if no one hs made a proposal to her
• But this would mean that n women are paired with all of n men so m cannot be free.Contradiction!
• Claim 3: The matching produced by the algorithm is stable
proof: Note that during the While loop:

• a woman is paired with men of increasing ranks on her list.
• a man is paired with women of decreasing ranks on his list.

Assume now the opposite, that the matching is not stable; thus, there are two pairs p = (m, w) and p’ = (m’, w’) such that:

• Since m prefers w’ over w, he must have proposed to w’ before proposing to w;

• Since he is paired with w, woman w’ must have either:

• rejected him because she was alread with someone whom she prefers ot
• dropped him later after a proposal from someone whom she prefers
• In both cases she would now be with m’ whom she prefers over m.