集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,
以此来获取比单个模型更好的回归或
分类表现
。
多个模型集成成为的模型叫做集成评估器(
ensemble estimator),组成集成评估器的每个模型都叫做基评估器 (
base estimator
)。通常来说,有三类集成算法:装袋法(
Bagging
),提升法(
Boosting
)和
stacking
。
本文介绍了如何利用sklearn的随机森林回归来填补数据中的缺失值,通过SimpleImputer策略处理缺失数据,并探讨了随机森林在防止过拟合方面的优势。同时,讨论了机器学习调参的基本思想,强调了偏差-方差困境,以及在树模型中如何寻找复杂度与泛化误差的平衡点。
4376
6033
6822
5362

被折叠的 条评论
为什么被折叠?