机器学习sklearn-2随机森林

本文介绍了如何利用sklearn的随机森林回归来填补数据中的缺失值,通过SimpleImputer策略处理缺失数据,并探讨了随机森林在防止过拟合方面的优势。同时,讨论了机器学习调参的基本思想,强调了偏差-方差困境,以及在树模型中如何寻找复杂度与泛化误差的平衡点。
摘要由CSDN通过智能技术生成

集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果, 以此来获取比单个模型更好的回归或 分类表现
 
多个模型集成成为的模型叫做集成评估器( ensemble estimator),组成集成评估器的每个模型都叫做基评估器 ( base estimator )。通常来说,有三类集成算法:装袋法( Bagging ),提升法( Boosting )和 stacking
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值