- 博客(114)
- 收藏
- 关注
原创 Python实现鸢尾花数据集的特征变换(超详细教程)
特征变换(Feature Transformation)是指在机器学习和数据预处理阶段,对原始数据集中的特征进行一系列数学或统计上的转换和处理,以生成新的特征或改善现有特征的表达形式。这种变换旨在提高数据的质量、增强模型的学习能力,以及优化模型的性能。数据标准化通常指的是将数据按照一定的规则进行转换,使得转换后的数据具有特定的属性,如均值为0,标准差为1。这有助于消除不同特征之间的量纲差异,使得它们在数值上具有可比性。好处消除量纲影响,使得不同特征之间可以直接进行比较和计算。
2025-01-15 08:00:00 1154 39
原创 Python实现鸢尾花连续变量和分类变量的可视化分析(超详细教程)
箱线图是一种用于显示一组数据分散情况资料的统计图。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。箱线图由五个主要部分组成:最小值、第一四分位数(Q1)、中位数(Q2)、第三四分位数(Q3)和最大值。它也可以显示异常值(outliers)。好处直观明了地识别数据中的异常值。判断数据偏态和尾重。对比几组数据的形状和分散程度。分组箱线图是在箱线图的基础上,根据某个分类变量将数据分组,并为每组数据绘制一个箱线图。这样可以对比不同组别之间的数据分布情况。好处。
2025-01-14 08:00:00 1241 35
原创 Python实现鸢尾花数据集可视化分析(超详细教程)
散点图是一种以坐标点的位置来表示数据之间关系的图表形式。通过在坐标轴上绘制各个数据点的位置,并根据数据属性进行标记,散点图可以帮助用户观察和理解数据之间的相关性、趋势、离群值等。数据关系可视化:直观地展示数据之间的关系,如线性相关性、聚类情况等。异常值检测:通过观察偏离主要数据区域的点,发现潜在的异常值。多维度分析:支持在同一个图表中展示多个指标或维度的关系。2D曲线图是通过绘制数据点在二维平面上的连线,来展示数据随时间或其他连续变量的变化趋势。趋势展示:清晰地展示数据的变化趋势和周期性波动。
2025-01-13 08:00:00 1165 5
原创 Python实现简单的缺失值处理(超详细教程)
在Python中处理缺失值至关重要,因为缺失值可能导致数据分析结果出现偏差,影响模型的准确性和可靠性。如果不对缺失值进行处理,统计分析可能会产生误导性的结论,机器学习模型也可能因为数据的不完整性而无法有效学习数据中的模式。此外,处理缺失值还有助于提升数据的质量和完整性,使数据更适合进行后续的分析和建模。通过适当的缺失值处理方法,如填充、删除或使用插值法,可以确保数据的连贯性和一致性,从而为数据科学和机器学习项目提供更坚实的基础。
2025-01-09 08:00:00 2225 43
原创 Python的Matplotlib库应用(超详细教程)
Matplotlib库是一款功能强大且灵活的Python数据可视化软件包,它支持跨平台运行,能够根据NumPyndarray数组绘制高质量的2D图像(也支持部分3D图像)。Matplotlib提供了类MATLAB的绘图API,使得绘图过程简单直观,代码清晰易懂。它广泛应用于数据分析、科学研究、报告生成以及教育与培训等领域,用户可以通过它创建多样化的图表类型,如折线图、柱状图、散点图等,并对图表的各个元素进行高度定制化的调整。无论是简单的图表还是复杂的可视化需求,Matplotlib都能提供高质量的输出。
2025-01-08 10:16:23 1464 42
原创 CSDN中群发功能及自动回复设置教程
CSDN中群发功能及自动回复设置教程,CSDN如何设置自动回复,CSDN如何设置群发功能,CSDN如何设置关键字自动回复,以上问题都会详细在本文中展现、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复
2025-01-08 10:15:50 673
原创 Python的Numpy库应用入门(超详细教程)
Python第三方库是由Python社区或其他开发者创建并维护的,扩展Python标准库功能的软件包或模块,它们提供了丰富的工具和功能,涵盖了从Web开发到数据科学、机器学习、图像处理等各个领域,使得开发工作更加高效和便捷。
2025-01-08 08:49:34 1212
原创 Python的pandas库基础知识(超详细教学)
Pandas是Python中用于数据处理和分析的核心库,提供了快速、灵活且明确的数据结构,主要包括一维的Series和二维的DataFrame。它支持从CSV、Excel、SQL等多种数据源导入数据,并具备数据清洗、合并、重塑、分组统计、时间序列分析等功能。Pandas还易于与其他Python数据分析库集成,是金融、统计、社会科学和工程等领域进行数据分析和处理的强大工具。
2025-01-08 08:48:34 1901 53
原创 Python实现数据描述(超详细教程)
数据集中位置是指在一组数据中,能够代表大多数观测值所处中心位置的统计量。它反映了数据的集中趋势,是数据描述统计中的一个重要方面。通过计算数据集中位置,我们可以对数据的整体情况进行初步了解,为后续的数据分析和处理提供基础。是一组数据中间位置上的值,它不受数据极端值的影响。当数据分布偏斜程度较大时,中位数可能是一个更好的选择。是一组数据分布的峰值,它表示数据中出现次数最多的观测值。众数不受数据极端值的影响,但具有不唯一性,一组数据可能有一个或多个众数,也可能没有众数。
2025-01-08 08:46:44 1308 3
原创 No Python at ‘C:\Users\MI\AppData\Local\Programs\Python\Python39\python.exe‘
NoPythonat'C:\Users\MI\AppData\Local\Programs\Python\Python39\python.exe',该问题存在于PyCharm中,一般是因为配置的环境位置不存在了的原因
2025-01-07 17:26:09 1507
原创 Python的条件判断、循环和函数(超详细教学)
Python中重要且常用的语法结构,主要有条件判断,循环和函数。Python 函数是代码块,用于执行特定任务或计算并返回结果。它们有助于代码的重用、模块化和组织。
2025-01-03 08:00:00 1056 17
原创 Python的元组和字典知识点(超详细教学)
Python的元组和字典知识点,Python的元组和字典知识点,Python的元组和字典知识点,Python的元组和字典知识点元组(Tuple)是Python中的一种内置数据类型,用于存储多个有序的元素。
2025-01-02 08:00:00 1383 73
原创 Python的列表基础知识点(超详细流程)
Python列表是一种非常常用的数据结构,用于存储有序的元素集合,列表中存在的方法分别有list( )、len( )、append( )、insert( )、pop( )、del、“+”、“*”、reverse( )、count( )、sort( )、min( )等方法
2024-12-31 08:00:00 2133 77
原创 Python的安装过程和环境搭建(超详细过程)
Python-3.7.4的资源包资源-CSDN文库Python-3.7.4是Python编程语言的一个特定版本,属于Python 3系列。Python是一种广泛使用的高级编程语言,以其清晰的语法和代码可读性而受到开发者们的喜爱。Python 3.7.4版本针对Python程序进行了优化和改进,提供了更稳定、更高效的编程环境。
2024-12-26 08:00:00 1117 9
原创 Python实现API开发
首先,你需要确保你的计算机上已经安装了Python和pip。你可以通过在命令行(终端或命令提示符)中输入以下命令来检查它们是否已安装。安装完成后,你可以通过运行一个简单的Flask应用来验证Flask是否已成功安装。如果Flask已正确安装,你应该会在浏览器中看到一个显示“Hello, World!”的页面(默认情况下,Flask应用会在。虽然这不是必需的,但升级pip到最新版本是一个好习惯,因为它可能包含重要的错误修复和新功能。打开PyCharm,找到Terminal,输入以下代码,升级pip。
2024-12-25 08:00:00 1093 7
原创 实现Python将csv数据导入到Neo4j
关于CSV数据集《我是刑警》导入到Neo4j中,形成知识图谱,本文详细描述过程,实现Python与Neo4j的连接,增进交互,实现知识图谱。
2024-12-20 15:54:53 2697 77
原创 Bitvisse SSH Client安装详细过程
BvSshClient-Inst.exe 双击运行该应用程序,也是直接下一步下一步即可。如何安装Rocky Linux8.5?详细过程及安装包如下-CSDN博客。我们之后都会在这里去操作虚拟机。
2024-11-12 08:15:00 756 75
原创 如何安装Rocky Linux8.5?详细过程及安装包如下
Rocky Linux 是一个开源的企业级操作系统,旨在与 Red ... Rocky Linux 安装界面和 centos 的安装界面简直就是一模一样,吃了左边的字Rocky Linux ,其他的都是一样的设置。 查看安装后的版本 yum.repo 修改为国内连接
2024-11-12 08:00:00 1078 41
原创 VMWare安装包及安装过程
所谓的虚拟机,就是在当前计算机系统中,又开启了一个虚拟系统这个虚拟系统,就是我们要安装的Linux系统一般情况下开发使用windows,部署Linux系统上Linux系统原生态状态下,基本没有任何软件,易用性差又因为Linux系统是开源,所以很多人为了让Linux系统变的易用一些,提供了很多默认安装的软件,市面上有很多人在使用CentOS、RockyLinux、Ubantu等等我们使用的Linux系统大多是别人写好的:应用程序+Linux内核。
2024-11-11 15:43:53 521 19
原创 谈谈ELK具体是啥
Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问
2024-11-11 08:00:00 1034 15
原创 所谓的ELK到底是啥
① 用于收集日志的② 日志作用:可以分析你的服务器最新的情况③ 日志分散在各个服务器中④ 我们希望收集日志,方便分析日志⑥ 这个时候我们可以使用ELK日志分析系统。
2024-11-10 08:00:00 556 3
原创 Elasticsearch的自定义查询方法到底是啥?
Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问
2024-11-09 08:00:00 356
原创 SpringBoot操作Elasticsearch
Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问
2024-11-08 08:15:00 509 8
原创 如何使用Elasticsearch操作数据库呢?
Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问
2024-11-08 08:00:00 392 5
原创 安装和启动ElasticSearch
如果想要对中文进行友好的分词,我们需要一个中文分词器,推荐IK分词器,IK分词器不是ES自带,需要自己安装,直接放到elasticsearch安装根目录下的plugins目录下。standard:是ES默认的分词器,只能对有空格的语言进行友好的分割,对于中文唯一,分词的结果是一个一个的字,是不符合日常使用的习惯,而且也不满足搜索的需求。我们使用的是IK提供的一个叫"ik_smart"的分词器,大家观察结果,可以发现是粗略的分词。缺点:分词的粒度大,可能会跳过一些重要的分词,导致查全率低,查询结果不全面。
2024-11-07 08:30:00 1095 4
原创 谈谈全文检索Elasticsearch的核心概念
在分布式环境下,任何一台机器都会随时宕机,如果宕机,index的一个分片没有,导致此index不能搜索。所以,为了保证数据的安全,我们会将每个index的分片经行备份,存储在另外的机器上。index数据过大时,将index里面的数据,分为多个shard,分布式的存储在各个服务器上面。es中的最小数据单元。每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field。es6默认新建索引时,5分片,2副本,也就是一主一备,共10个分片。
2024-11-07 08:15:00 1066 5
原创 Elasticsearch的功能及概念
找到工作后,做分布式高性能项目,再封装compass,写出了elasticsearch,使得lucene支持分布式。商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅《java编程思想》的监控,如果价格低于27块钱,就通知我,我就去买。功能强大:Elasticsearch作为传统数据库的一个补充,提供了数据库所不不能提供的很多功能,如全文检索,同义词处理,相关度排名。维基百科,类似百度百科,“网络七层协议”的维基百科,全文检索,高亮,搜索推荐。
2024-11-06 08:51:45 801 2
原创 全文检索ElasticSearch到底是什么?
但是电商项目中,商品上亿条时,查询“笔记本电脑”等关键词时,上亿条数据的商品名字段逐行扫描,性能跟不上。而且不能分词,如搜索“笔记本电脑”,只能搜索完全和关键词一样的数据,那么数据量小时,搜索“笔记本电脑”,“电脑”数据要不要给用户。需要对查询进行优化,在课程项目中使用的ElasticSearch,优化后从同样的数据量的ES中查询相同的数据,效率能够提高100倍以上。2.创建索引之后,对该表进行增删改的操作时,会引起索引的更新,所以效率会降低。数据库中有索引可以提高查询效率,但是模糊查询,会使用索引失效。
2024-11-06 08:47:46 2081 5
原创 Quartz的使用
Job:工作任务调度的接口,任务类需要实现该接口。在里面编写任务执行的业务逻辑。Job实例在Quartz中的生命周期:每次调度器执行Job时,它在调用execute方法前会创建一个新的Job实例,当调用完成后,关联的Job对象实例会被释放,释放的实例会被垃圾回收机制回收。JobDetail:JobDetail为Job实例提供了许多设置属性,以及JobDataMap成员变量属性,它用来存储特定Job实例的状态信息,调度器需要借助JobDetail对象来添加Job实例。
2024-11-05 08:15:00 2648 35
原创 Quartz的了解
Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用。quartz是开源且具有丰富特性的"任务调度库",能够集成于任何的java应用,小到独立的应用,大至电子商业系统。quartz能够创建亦简单亦复杂的调度,以执行上十、上百,甚至上万的任务。任务job被定义为标准的java组件,能够执行任何你想要实现的功能。quartz调度框架包含许多企业级的特性,如JTA事务、集群的支持。
2024-11-05 08:00:00 764
原创 MQ的详细大全知识点
MQ(Message Queue)是一种在分布式系统中广泛应用的消息中间件,它基于“先进先出”的数据结构原理,用于在不同系统之间传递消息。在点对点模式下,消息被发送到特定的Queue中,只有该Queue的订阅者才能消费这些消息,实现了一种较为严格的消息传递机制。而在发布/订阅模式下,消息被发布到Topic中,所有订阅了该Topic的消费者都可以接收到这些消息,实现了一种广播式的消息传递方式。系统需要维护更多的消息队列和中间件,同时还需要保证消息的一致性和可靠性,避免出现消息丢失或重复消费等问题。
2024-11-04 08:15:00 1063 11
原创 SpringBoot整合RabbitMQ
创建生产者SpringBoot工程添加依赖编写yml配置,基本信息配置定义交换机、队列以及绑定关系的配置类发送消息。
2024-11-04 08:00:00 1094 1
原创 RabbitMQ的主题模式
这就提出了一个新的问题,在队列中得到一个响应时,我们不清楚这个响应所对应的是哪一条请求。稍后,当我们在回调队列里收到一条消息的时候,我们将查看它的id属性,这样我们就可以匹配对应的请求和响应。如果我们发现了一个未知的id值,我们可以安全的丢弃这条消息,因为它不属于我们的请求。我们可以使用默认队列。在本节中,我们将会学习使用RabbitMQ去搭建一个RPC系统:一个客户端和一个可以升级(扩展)的RPC服务器。这是非常低效的,这里还有一个更好的方法:让我们为每个客户端创建一个回调队列。
2024-11-03 08:00:00 1238 3
原创 RabbitMQ的路由模式
Exchange 不再把消息交给每一个绑定的队列,而是根据消息的 Routing Key 进行判断,只有队列的 Routingkey 与消息的 Routing key 完全一致,才会接收到消息。队列与交换机的绑定,不能是任意绑定了,而是要指定一个 RoutingKey(路由key)消息的发送方在向 Exchange 发送消息时,也必须指定消息的 RoutingKey。
2024-11-02 08:00:00 370
原创 RabbitMQ的发布订阅模式
另一方面,知道如何处理消息,例如递交给某个特别队列、 递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与 Exchange 绑定,或者没有符合 路由规则的队列,那么消息会丢失。Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列。Direct:定向,把消息交给符合指定routing key 的队列。Fanout:广播,将消息交给所有绑定到交换机的队列。
2024-11-01 08:15:00 634 3
原创 RabbitMQ的工作模式
首先来了解一下AMQPAMQP,即 Advanced Message Queuing Protocol(高级消息队列协议),是一个网络协议,是应用层协议 的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中 间件不同产品,不同的开发语言等条件的限制。2006年,AMQP 规范发布。类比HTTP。2007年,Rabbit 技术公司基于 AMQP 标准开发的 RabbitMQ 1.0 发布。RabbitMQ 采用 Erlang 语言开发。
2024-11-01 08:00:00 845 1
原创 MQ详细概念及其了解
既然 MQ 有优势也有劣势,那么使用 MQ 需要满足什么条件呢?生产者不需要从消费者处获得反馈。引入消息队列之前的直接调用,其接口的返回值应该为空,这才让明 明下层的动作还没做,上层却当成动作做完了继续往后走,即所谓异步成为了可能。容许短暂的不一致性。确实是用了有效果。即解耦、提速、削峰这些方面的收益,超过加入MQ,管理MQ这些成本。
2024-10-31 08:15:00 947 1
原创 Redis集群及Redis存储原理
也就是主机(master)工作时,安排一台备用机(slave)实时同步数据,万一主机宕机,我们可以切换到备机运行。缺点,这样的方案,slave节点没有任何实质作用,只要master不宕机它就和没有一样,没有体现价值。但是如果master宕机,实际上主备机的切换,实际上还是需要人工介入的,这还是需要时间的。如果ping请求有2个(集群的半数节点)以上的哨兵节点没有收到正常响应,会认为该节点下线。但是如果哨兵判断节点状态时发生了误判,那么就会错误将master下线,降低整体运行性能。
2024-10-31 08:00:00 749 1
原创 Redis的应用场景
首先,Redis的特点: 相比MySQL等、读写速度非常快存在数据一致问题 并不是每时每刻都与MySQL中的数据完全一样 所以,使用Redis的前提应该是: 需要高速的、高频率读写(可能包含写) 不太关注数据一致问题(偶尔不一致并不会带来严重后果)
2024-10-30 08:15:00 784 4
鸢尾花数据集的特征变换python代码
2025-01-09
鸢尾花连续变量和分类变量的可视化
2025-01-09
鸢尾花数据集可视化代码
2025-01-09
机器学习与应用课程设计任务书+二手车销售数据.doc
2025-01-08
Python实现缺失值处理代码
2025-01-07
Python实现简单的缺失值处理代码
2025-01-06
二手车销售数据集CSV格式文件
2025-01-06
iris.csv(iris数据集、鸢尾花数据集)
2025-01-02
Python实现安居客蜀山区二手房信息抓取与Excel存储
2024-12-27
基于Python的笔趣阁小说网站爬虫实现
2024-12-27
Python-3.7.4的资源包
2024-12-24
Bitvisse SSH Client安装包或者是BvSshClient安装包
2024-12-20
JDK11安装包文件夹资源
2024-12-20
《我是刑警》的人物关系数据集
2024-12-20
Neo4j安装包资源包
2024-12-19
VMWare安装包链接
2024-12-19
otp-win64-26.2.1的安装包
2024-11-21
RabbitmMQ的安装包
2024-11-21
深度学习实验报告 - TensorFlow基础训练(张量操作与应用)
2024-11-19
Python环境配置与数据分析编程练习
2024-11-19
基于TensorFlow实现美食图片线性回归评分
2024-11-19
深度学习实验:TensorFlow 张量的基本及高级操作技巧教程
2024-11-19
实验六 正弦波产生电路记录.doc
2024-10-29
实验六 正弦波产生电路.doc
2024-10-29
实验五 研究和验证负反馈放大器性能记录
2024-10-29
实验五 研究和验证负反馈放大器性能
2024-10-29
三极管的判断及共发射极放大电路实验记录
2024-10-29
实验四 三极管的判断及共发射极放大电路
2024-10-29
二极管的判断及直流稳压电源电路模型
2024-10-29
电路实验三 二极管的判断及直流稳压电源电路
2024-10-29
settings.xml
2024-10-25
电路实验二 验证戴维南定理模型
2024-10-25
电路基础实验二 戴维南定理的验证
2024-10-25
电路基础实验一 电路叠加定理的验证记录结果
2024-10-25
电路基础实验一 电路叠加定理的验证
2024-10-25
电路基础-nidmsrv软件
2024-10-25
SQL练习资源-具体练习操作可以查看我发布的文章
2024-10-21
数据库驱动-mysql-connector-java-8.0.25.jar
2024-10-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人