自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小星袁

感谢各位大佬光临,有三必回,真诚互三!!!

  • 博客(114)
  • 收藏
  • 关注

原创 Python实现鸢尾花数据集的特征变换(超详细教程)

特征变换(Feature Transformation)是指在机器学习和数据预处理阶段,对原始数据集中的特征进行一系列数学或统计上的转换和处理,以生成新的特征或改善现有特征的表达形式。这种变换旨在提高数据的质量、增强模型的学习能力,以及优化模型的性能。数据标准化通常指的是将数据按照一定的规则进行转换,使得转换后的数据具有特定的属性,如均值为0,标准差为1。这有助于消除不同特征之间的量纲差异,使得它们在数值上具有可比性。好处消除量纲影响,使得不同特征之间可以直接进行比较和计算。

2025-01-15 08:00:00 1154 39

原创 Python实现鸢尾花连续变量和分类变量的可视化分析(超详细教程)

箱线图是一种用于显示一组数据分散情况资料的统计图。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。箱线图由五个主要部分组成:最小值、第一四分位数(Q1)、中位数(Q2)、第三四分位数(Q3)和最大值。它也可以显示异常值(outliers)。好处直观明了地识别数据中的异常值。判断数据偏态和尾重。对比几组数据的形状和分散程度。分组箱线图是在箱线图的基础上,根据某个分类变量将数据分组,并为每组数据绘制一个箱线图。这样可以对比不同组别之间的数据分布情况。好处。

2025-01-14 08:00:00 1241 35

原创 Python实现鸢尾花数据集可视化分析(超详细教程)

散点图是一种以坐标点的位置来表示数据之间关系的图表形式。通过在坐标轴上绘制各个数据点的位置,并根据数据属性进行标记,散点图可以帮助用户观察和理解数据之间的相关性、趋势、离群值等。数据关系可视化:直观地展示数据之间的关系,如线性相关性、聚类情况等。异常值检测:通过观察偏离主要数据区域的点,发现潜在的异常值。多维度分析:支持在同一个图表中展示多个指标或维度的关系。2D曲线图是通过绘制数据点在二维平面上的连线,来展示数据随时间或其他连续变量的变化趋势。趋势展示:清晰地展示数据的变化趋势和周期性波动。

2025-01-13 08:00:00 1165 5

原创 Python实现简单的缺失值处理(超详细教程)

在Python中处理缺失值至关重要,因为缺失值可能导致数据分析结果出现偏差,影响模型的准确性和可靠性。如果不对缺失值进行处理,统计分析可能会产生误导性的结论,机器学习模型也可能因为数据的不完整性而无法有效学习数据中的模式。此外,处理缺失值还有助于提升数据的质量和完整性,使数据更适合进行后续的分析和建模。通过适当的缺失值处理方法,如填充、删除或使用插值法,可以确保数据的连贯性和一致性,从而为数据科学和机器学习项目提供更坚实的基础。

2025-01-09 08:00:00 2225 43

原创 Python的Matplotlib库应用(超详细教程)

Matplotlib库是一款功能强大且灵活的Python数据可视化软件包,它支持跨平台运行,能够根据NumPyndarray数组绘制高质量的2D图像(也支持部分3D图像)。Matplotlib提供了类MATLAB的绘图API,使得绘图过程简单直观,代码清晰易懂。它广泛应用于数据分析、科学研究、报告生成以及教育与培训等领域,用户可以通过它创建多样化的图表类型,如折线图、柱状图、散点图等,并对图表的各个元素进行高度定制化的调整。无论是简单的图表还是复杂的可视化需求,Matplotlib都能提供高质量的输出。

2025-01-08 10:16:23 1464 42

原创 CSDN中群发功能及自动回复设置教程

CSDN中群发功能及自动回复设置教程,CSDN如何设置自动回复,CSDN如何设置群发功能,CSDN如何设置关键字自动回复,以上问题都会详细在本文中展现、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复、群发功能、自动回复

2025-01-08 10:15:50 673

原创 Python的Numpy库应用入门(超详细教程)

Python第三方库是由Python社区或其他开发者创建并维护的,扩展Python标准库功能的软件包或模块,它们提供了丰富的工具和功能,涵盖了从Web开发到数据科学、机器学习、图像处理等各个领域,使得开发工作更加高效和便捷。

2025-01-08 08:49:34 1212

原创 Python的pandas库基础知识(超详细教学)

Pandas是Python中用于数据处理和分析的核心库,提供了快速、灵活且明确的数据结构,主要包括一维的Series和二维的DataFrame。它支持从CSV、Excel、SQL等多种数据源导入数据,并具备数据清洗、合并、重塑、分组统计、时间序列分析等功能。Pandas还易于与其他Python数据分析库集成,是金融、统计、社会科学和工程等领域进行数据分析和处理的强大工具。

2025-01-08 08:48:34 1901 53

原创 Python实现数据描述(超详细教程)

数据集中位置是指在一组数据中,能够代表大多数观测值所处中心位置的统计量。它反映了数据的集中趋势,是数据描述统计中的一个重要方面。通过计算数据集中位置,我们可以对数据的整体情况进行初步了解,为后续的数据分析和处理提供基础。是一组数据中间位置上的值,它不受数据极端值的影响。当数据分布偏斜程度较大时,中位数可能是一个更好的选择。是一组数据分布的峰值,它表示数据中出现次数最多的观测值。众数不受数据极端值的影响,但具有不唯一性,一组数据可能有一个或多个众数,也可能没有众数。

2025-01-08 08:46:44 1308 3

原创 No Python at ‘C:\Users\MI\AppData\Local\Programs\Python\Python39\python.exe‘

NoPythonat'C:\Users\MI\AppData\Local\Programs\Python\Python39\python.exe',该问题存在于PyCharm中,一般是因为配置的环境位置不存在了的原因

2025-01-07 17:26:09 1507

原创 Python的条件判断、循环和函数(超详细教学)

Python中重要且常用的语法结构,主要有条件判断,循环和函数。Python 函数是代码块,用于执行特定任务或计算并返回结果。它们有助于代码的重用、模块化和组织。

2025-01-03 08:00:00 1056 17

原创 Python的元组和字典知识点(超详细教学)

Python的元组和字典知识点,Python的元组和字典知识点,Python的元组和字典知识点,Python的元组和字典知识点元组(Tuple)是Python中的一种内置数据类型,用于存储多个有序的元素。

2025-01-02 08:00:00 1383 73

原创 Python的列表基础知识点(超详细流程)

Python列表是一种非常常用的数据结构,用于存储有序的元素集合,列表中存在的方法分别有list( )、len( )、append( )、insert( )、pop( )、del、“+”、“*”、reverse( )、count( )、sort( )、min( )等方法

2024-12-31 08:00:00 2133 77

原创 Python的安装过程和环境搭建(超详细过程)

Python-3.7.4的资源包资源-CSDN文库Python-3.7.4是Python编程语言的一个特定版本,属于Python 3系列。Python是一种广泛使用的高级编程语言,以其清晰的语法和代码可读性而受到开发者们的喜爱。Python 3.7.4版本针对Python程序进行了优化和改进,提供了更稳定、更高效的编程环境。

2024-12-26 08:00:00 1117 9

原创 Python实现API开发

首先,你需要确保你的计算机上已经安装了Python和pip。你可以通过在命令行(终端或命令提示符)中输入以下命令来检查它们是否已安装。安装完成后,你可以通过运行一个简单的Flask应用来验证Flask是否已成功安装。如果Flask已正确安装,你应该会在浏览器中看到一个显示“Hello, World!”的页面(默认情况下,Flask应用会在。虽然这不是必需的,但升级pip到最新版本是一个好习惯,因为它可能包含重要的错误修复和新功能。打开PyCharm,找到Terminal,输入以下代码,升级pip。

2024-12-25 08:00:00 1093 7

原创 JDK11下载安装和配置超详细过程

JDK11安装包详细过程

2024-12-23 08:00:00 1153 14

原创 实现Python将csv数据导入到Neo4j

关于CSV数据集《我是刑警》导入到Neo4j中,形成知识图谱,本文详细描述过程,实现Python与Neo4j的连接,增进交互,实现知识图谱。

2024-12-20 15:54:53 2697 77

原创 Bitvisse SSH Client安装详细过程

BvSshClient-Inst.exe 双击运行该应用程序,也是直接下一步下一步即可。如何安装Rocky Linux8.5?详细过程及安装包如下-CSDN博客。我们之后都会在这里去操作虚拟机。

2024-11-12 08:15:00 756 75

原创 如何安装Rocky Linux8.5?详细过程及安装包如下

Rocky Linux 是一个开源的企业级操作系统,旨在与 Red ... Rocky Linux 安装界面和 centos 的安装界面简直就是一模一样,吃了左边的字Rocky Linux ,其他的都是一样的设置。 查看安装后的版本 yum.repo 修改为国内连接

2024-11-12 08:00:00 1078 41

原创 VMWare安装包及安装过程

所谓的虚拟机,就是在当前计算机系统中,又开启了一个虚拟系统这个虚拟系统,就是我们要安装的Linux系统一般情况下开发使用windows,部署Linux系统上Linux系统原生态状态下,基本没有任何软件,易用性差又因为Linux系统是开源,所以很多人为了让Linux系统变的易用一些,提供了很多默认安装的软件,市面上有很多人在使用CentOS、RockyLinux、Ubantu等等我们使用的Linux系统大多是别人写好的:应用程序+Linux内核。

2024-11-11 15:43:53 521 19

原创 谈谈ELK具体是啥

Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问

2024-11-11 08:00:00 1034 15

原创 所谓的ELK到底是啥

① 用于收集日志的② 日志作用:可以分析你的服务器最新的情况③ 日志分散在各个服务器中④ 我们希望收集日志,方便分析日志⑥ 这个时候我们可以使用ELK日志分析系统。

2024-11-10 08:00:00 556 3

原创 Elasticsearch的自定义查询方法到底是啥?

Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问

2024-11-09 08:00:00 356

原创 SpringBoot操作Elasticsearch

Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问

2024-11-08 08:15:00 509 8

原创 如何使用Elasticsearch操作数据库呢?

Elasticsearch可以非常方便地进行数据的多维分析,所以大数据分析领域也经常会见到它的身影,生产环境中绝大部分新产生的数据可以通过应用直接导入,但是历史或初始数据可能会需要单独处理,这种情况下可能遇到需要导入大量数据的情况 这里简单分享一下批量导入数据的操作方法与相关基础,还有可能会碰到的问

2024-11-08 08:00:00 392 5

原创 安装和启动ElasticSearch

如果想要对中文进行友好的分词,我们需要一个中文分词器,推荐IK分词器,IK分词器不是ES自带,需要自己安装,直接放到elasticsearch安装根目录下的plugins目录下。standard:是ES默认的分词器,只能对有空格的语言进行友好的分割,对于中文唯一,分词的结果是一个一个的字,是不符合日常使用的习惯,而且也不满足搜索的需求。我们使用的是IK提供的一个叫"ik_smart"的分词器,大家观察结果,可以发现是粗略的分词。缺点:分词的粒度大,可能会跳过一些重要的分词,导致查全率低,查询结果不全面。

2024-11-07 08:30:00 1095 4

原创 谈谈全文检索Elasticsearch的核心概念

在分布式环境下,任何一台机器都会随时宕机,如果宕机,index的一个分片没有,导致此index不能搜索。所以,为了保证数据的安全,我们会将每个index的分片经行备份,存储在另外的机器上。index数据过大时,将index里面的数据,分为多个shard,分布式的存储在各个服务器上面。es中的最小数据单元。每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field。es6默认新建索引时,5分片,2副本,也就是一主一备,共10个分片。

2024-11-07 08:15:00 1066 5

原创 Elasticsearch的功能及概念

找到工作后,做分布式高性能项目,再封装compass,写出了elasticsearch,使得lucene支持分布式。商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅《java编程思想》的监控,如果价格低于27块钱,就通知我,我就去买。功能强大:Elasticsearch作为传统数据库的一个补充,提供了数据库所不不能提供的很多功能,如全文检索,同义词处理,相关度排名。维基百科,类似百度百科,“网络七层协议”的维基百科,全文检索,高亮,搜索推荐。

2024-11-06 08:51:45 801 2

原创 全文检索ElasticSearch到底是什么?

但是电商项目中,商品上亿条时,查询“笔记本电脑”等关键词时,上亿条数据的商品名字段逐行扫描,性能跟不上。而且不能分词,如搜索“笔记本电脑”,只能搜索完全和关键词一样的数据,那么数据量小时,搜索“笔记本电脑”,“电脑”数据要不要给用户。需要对查询进行优化,在课程项目中使用的ElasticSearch,优化后从同样的数据量的ES中查询相同的数据,效率能够提高100倍以上。2.创建索引之后,对该表进行增删改的操作时,会引起索引的更新,所以效率会降低。数据库中有索引可以提高查询效率,但是模糊查询,会使用索引失效。

2024-11-06 08:47:46 2081 5

原创 Quartz的使用

Job:工作任务调度的接口,任务类需要实现该接口。在里面编写任务执行的业务逻辑。Job实例在Quartz中的生命周期:每次调度器执行Job时,它在调用execute方法前会创建一个新的Job实例,当调用完成后,关联的Job对象实例会被释放,释放的实例会被垃圾回收机制回收。JobDetail:JobDetail为Job实例提供了许多设置属性,以及JobDataMap成员变量属性,它用来存储特定Job实例的状态信息,调度器需要借助JobDetail对象来添加Job实例。

2024-11-05 08:15:00 2648 35

原创 Quartz的了解

Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用。quartz是开源且具有丰富特性的"任务调度库",能够集成于任何的java应用,小到独立的应用,大至电子商业系统。quartz能够创建亦简单亦复杂的调度,以执行上十、上百,甚至上万的任务。任务job被定义为标准的java组件,能够执行任何你想要实现的功能。quartz调度框架包含许多企业级的特性,如JTA事务、集群的支持。

2024-11-05 08:00:00 764

原创 MQ的详细大全知识点

MQ(Message Queue)是一种在分布式系统中广泛应用的消息中间件,它基于“先进先出”的数据结构原理,用于在不同系统之间传递消息。在点对点模式下,消息被发送到特定的Queue中,只有该Queue的订阅者才能消费这些消息,实现了一种较为严格的消息传递机制。而在发布/订阅模式下,消息被发布到Topic中,所有订阅了该Topic的消费者都可以接收到这些消息,实现了一种广播式的消息传递方式。系统需要维护更多的消息队列和中间件,同时还需要保证消息的一致性和可靠性,避免出现消息丢失或重复消费等问题。

2024-11-04 08:15:00 1063 11

原创 SpringBoot整合RabbitMQ

创建生产者SpringBoot工程添加依赖编写yml配置,基本信息配置定义交换机、队列以及绑定关系的配置类发送消息。

2024-11-04 08:00:00 1094 1

原创 RabbitMQ的主题模式

这就提出了一个新的问题,在队列中得到一个响应时,我们不清楚这个响应所对应的是哪一条请求。稍后,当我们在回调队列里收到一条消息的时候,我们将查看它的id属性,这样我们就可以匹配对应的请求和响应。如果我们发现了一个未知的id值,我们可以安全的丢弃这条消息,因为它不属于我们的请求。我们可以使用默认队列。在本节中,我们将会学习使用RabbitMQ去搭建一个RPC系统:一个客户端和一个可以升级(扩展)的RPC服务器。这是非常低效的,这里还有一个更好的方法:让我们为每个客户端创建一个回调队列。

2024-11-03 08:00:00 1238 3

原创 RabbitMQ的路由模式

Exchange 不再把消息交给每一个绑定的队列,而是根据消息的 Routing Key 进行判断,只有队列的 Routingkey 与消息的 Routing key 完全一致,才会接收到消息。队列与交换机的绑定,不能是任意绑定了,而是要指定一个 RoutingKey(路由key)消息的发送方在向 Exchange 发送消息时,也必须指定消息的 RoutingKey。

2024-11-02 08:00:00 370

原创 RabbitMQ的发布订阅模式

另一方面,知道如何处理消息,例如递交给某个特别队列、 递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与 Exchange 绑定,或者没有符合 路由规则的队列,那么消息会丢失。Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列。Direct:定向,把消息交给符合指定routing key 的队列。Fanout:广播,将消息交给所有绑定到交换机的队列。

2024-11-01 08:15:00 634 3

原创 RabbitMQ的工作模式

首先来了解一下AMQPAMQP,即 Advanced Message Queuing Protocol(高级消息队列协议),是一个网络协议,是应用层协议 的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中 间件不同产品,不同的开发语言等条件的限制。2006年,AMQP 规范发布。类比HTTP。2007年,Rabbit 技术公司基于 AMQP 标准开发的 RabbitMQ 1.0 发布。RabbitMQ 采用 Erlang 语言开发。

2024-11-01 08:00:00 845 1

原创 MQ详细概念及其了解

既然 MQ 有优势也有劣势,那么使用 MQ 需要满足什么条件呢?生产者不需要从消费者处获得反馈。引入消息队列之前的直接调用,其接口的返回值应该为空,这才让明 明下层的动作还没做,上层却当成动作做完了继续往后走,即所谓异步成为了可能。容许短暂的不一致性。确实是用了有效果。即解耦、提速、削峰这些方面的收益,超过加入MQ,管理MQ这些成本。

2024-10-31 08:15:00 947 1

原创 Redis集群及Redis存储原理

也就是主机(master)工作时,安排一台备用机(slave)实时同步数据,万一主机宕机,我们可以切换到备机运行。缺点,这样的方案,slave节点没有任何实质作用,只要master不宕机它就和没有一样,没有体现价值。但是如果master宕机,实际上主备机的切换,实际上还是需要人工介入的,这还是需要时间的。如果ping请求有2个(集群的半数节点)以上的哨兵节点没有收到正常响应,会认为该节点下线。但是如果哨兵判断节点状态时发生了误判,那么就会错误将master下线,降低整体运行性能。

2024-10-31 08:00:00 749 1

原创 Redis的应用场景

首先,Redis的特点: 相比MySQL等、读写速度非常快存在数据一致问题 并不是每时每刻都与MySQL中的数据完全一样 所以,使用Redis的前提应该是: 需要高速的、高频率读写(可能包含写) 不太关注数据一致问题(偶尔不一致并不会带来严重后果)

2024-10-30 08:15:00 784 4

贝叶斯算法和神经网络实验

贝叶斯算法和神经网络实验、贝叶斯算法和神经网络实验、贝叶斯算法和神经网络实验、贝叶斯算法和神经网络实验、贝叶斯算法和神经网络实验

2025-01-13

鸢尾花数据集的特征变换python代码

鸢尾花数据集的特征变换是指对原始数据集中的特征进行一系列的处理和转换,以适应机器学习模型的输入要求。该数据集原本包含四个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度,这些特征都是数值型的,且以厘米为单位。然而,在实际应用中,原始特征可能无法满足模型的特定需求,因此需要进行特征变换。特征变换可以包括数据规范化、标准化、归一化等操作,旨在消除不同特征之间的量纲差异,提高模型的收敛速度和性能。通过特征变换,可以使数据更加适合机器学习算法的处理,从而提高模型的准确性和稳定性。         在鸢尾花数据集中,特征变换还可以涉及特征选择、特征提取或构造等高级操作。特征选择是根据相关性和重要性筛选出最有价值的特征,以减少模型的复杂度并提高泛化能力。特征提取则是通过统计分析、降维技术(如PCA)等方式生成新的特征,这些新特征能够更全面地反映数据的内在结构和信息。特征构造则是通过特征交叉、组合等方式生成新的特征,以增加模型的表达能力。这些高级的特征变换操作可以进一步提升机器学习模型的性能,使其能够更好地处理复杂的分类任务。在鸢尾花数据集的案例中,虽然原始特征已经足够描述样本,但在实际应用中,特征变

2025-01-09

鸢尾花连续变量和分类变量的可视化

连续变量是数值型数据的一种,其取值在某一区间内可以无限细分,表现为小数或实数形式。这类变量能够反映事物在数量上的连续变化,如身高、体重、温度等。与之相对,分类变量则是用来描述事物类别的变量,通常表现为文字或整数代码,用以区分不同的类别或组别,例如性别(男、女)、血型(A、B、O、AB)等。 在数据可视化领域,连续变量和分类变量各有其独特的呈现方式。对于连续变量,由于其取值范围广泛且连续,我们常采用线图、散点图或直方图等图表类型进行展示。线图能够清晰地描绘出变量随时间或其他连续变量的变化趋势;散点图则有助于观察两个连续变量之间的相关关系;而直方图则能直观地反映出连续变量的分布形态。 相比之下,分类变量的可视化则更多地依赖于条形图、饼图或堆叠条形图等图表类型。条形图通过不同长度的条块来代表各类别的频数或比例,便于对比各类别之间的差异;饼图则将整体划分为多个扇形区域,每个区域代表一个类别,通过扇形面积的大小来展示各类别的占比;堆叠条形图则进一步结合了条形图和堆叠的概念,用于展示多个类别在同一维度上的累积效应。这些图表类型都能有效地传达分类变量的信息,帮助我们更好地理解数据的结构和特征。

2025-01-09

鸢尾花数据集可视化代码

 数据可视化的好处主要体现在两大方面。首先,它能够把原本抽象、复杂的数据转化为直观、生动的图形和图像,使得数据和信息更加易于理解和消化。在快节奏的工作环境中,这样的呈现方式能极大地提高我们处理和理解数据的能力,帮助我们迅速抓住数据的关键特征和趋势,从而做出更加明智和及时的决策。无论是管理层制定战略计划,还是分析师进行数据挖掘,数据可视化都能提供有力的支持,确保决策的科学性和准确性。         其次,数据可视化在揭示数据内在规律和趋势方面发挥着重要作用。通过巧妙的图表设计和数据呈现,我们能够发现数据中隐藏的关联和模式,这些往往是我们通过简单浏览数字表格所难以捕捉到的。数据可视化让我们得以深入挖掘数据的价值,揭示数据背后的故事和洞见,为业务分析和探索提供新的视角和思路。这种能力对于推动业务发展、优化运营策略、提升用户体验等方面都具有不可估量的价值,是现代数据科学和商业智能不可或缺的一部分。

2025-01-09

机器学习与应用课程设计任务书+二手车销售数据.doc

一、课程设计目的 1.加深学生对机器学习与应用课程中的数据分析、可视化展示、数据预处理、机器学习算法应用的理解,综合应用所学的知识,完成一个基于数据集的机器学习算法应用; 2.根据问题需要,通过查阅手册和文献资料,培养分析和解决实际问题的能力; 3.能够运用机器学习相关理论、方法以及技术解决实际复杂问题,具有良好的专业工程实践能力; 4.能够在团队中进行有效的沟通、协作,具备一定组织和管理能力以及国际视野。 二、课程设计内容和设计要求 设计内容:预测得二手车销售数据的相关因素 设计要求:通过各项数据加上机器学习各类算法得到预测数据的相关因素 三、课程设计思路 随着人民逐渐优渥的生活,越来越多的人会购买性能更好的车,所以,会有很多相对次一点的车就会流入二手市场,这时会有更多的人想以更优惠的价格购买车辆,所以对于二手车的数据分析就显得格外重要,我们对大量数据进行预处理,采用回归算法,利用图形可视化库将各类二手数据之间的关系展现出来,评判各类因素对二手车价格的影响。 四、具体成果形式 成果形式:系统源码和课程设计报告。 要求:源码符合编码规范,可读性强,上机测试程序运行正确;课程设计报告结

2025-01-08

Python实现缺失值处理代码

1. 数据质量评估 缺失值是数据质量的一个直接指标。过多的缺失值可能意味着数据收集、记录或传输过程中存在问题,或者数据本身就是不完整的。通过发现和处理缺失值,我们可以评估数据的整体质量,并确定是否需要进一步的数据清洗或重新收集。 2. 模型性能影响 在机器学习模型中,缺失值可能导致模型性能下降。如果模型在训练过程中没有正确处理缺失值,它们可能会引入偏差或方差,从而影响模型的准确性和泛化能力。因此,发现缺失值是确保模型性能稳定可靠的重要步骤。 3. 避免数据偏差 缺失值可能不是随机分布的,而是与某些变量或特征相关。如果忽略这些缺失值,可能会导致数据偏差,从而影响分析结果的准确性。通过发现和处理缺失值,我们可以减少这种偏差,使分析结果更加可靠。 4. 数据完整性 数据的完整性对于任何分析或决策都是至关重要的。缺失值可能意味着某些关键信息丢失或未被记录,这可能导致我们对数据的理解不完整。通过发现和处理缺失值,我们可以确保数据的完整性,从而做出更准确的决策。 5. 提升数据价值 处理缺失值不仅是为了满足模型训练的需求,更是为了提升数据的整体价值。通过填补缺失值或利用缺失值进行更深入的分

2025-01-07

Python实现简单的缺失值处理代码

在Python中处理缺失值至关重要,因为缺失值可能导致数据分析结果出现偏差,影响模型的准确性和可靠性。如果不对缺失值进行处理,统计分析可能会产生误导性的结论,机器学习模型也可能因为数据的不完整性而无法有效学习数据中的模式。 此外,处理缺失值还有助于提升数据的质量和完整性,使数据更适合进行后续的分析和建模。通过适当的缺失值处理方法,如填充、删除或使用插值法,可以确保数据的连贯性和一致性,从而为数据科学和机器学习项目提供更坚实的基础。

2025-01-06

二手车销售数据集CSV格式文件

二手车销售数据集是包含大量二手车销售信息的资源,这些数据集对于深入了解二手车市场、分析销售趋势以及预测二手车价格等方面具有重要意义。以下是对二手车销售数据集的详细介绍: 一、数据集来源 二手车销售数据集通常来源于多个渠道,包括: 二手车交易平台:这些平台提供了丰富的二手车销售信息,包括车辆的基本信息、价格、交易记录等。 政府机构或市场调研公司:这些机构会定期发布二手车市场的相关数据和报告,这些数据集通常更加权威和全面。 公开数据集:一些网站或平台会提供公开的二手车销售数据集,供研究人员和爱好者使用。 二、数据集内容 二手车销售数据集通常包含以下关键信息: 车辆基本信息: 品牌与型号:反映了车辆的品牌和具体型号,不同品牌和型号的车辆在市场上的表现和受欢迎程度可能差异很大。 年份与里程:车辆的出厂年份和行驶里程,直接关联到车辆的折旧程度和剩余价值。 车况:如新车、准新车、良好、一般或破损等,反映了车辆的磨损程度和可能需要的维修成本。 颜色、内饰、变速器类型、燃油效率:这些信息对于全面评估车辆的价值和性能至关重要。 交易信息: 销售价格:是分析市场价值和定价策略的重要依据。 销售时间:

2025-01-06

iris.csv(iris数据集、鸢尾花数据集)

鸢尾花数据集(Iris Dataset),又称安德森鸢尾花卉数据集(Anderson’s Iris Data Set),是数据科学与机器学习领域中最著名的经典数据集之一。鸢尾花数据集可以通过多种方式获取,如Scikit-learn提供的内置数据集,以及UCI机器学习库等。获取后,可以使用Python等编程语言进行数据加载、预处理和模型训练等操作。 综上所述,鸢尾花数据集以其简洁明了的数据结构和广泛的应用场景,成为了机器学习初学者的首选案例。通过学习和实践这一数据集,初学者可以逐步掌握机器学习的基础知识和技能。

2025-01-02

Python实现安居客蜀山区二手房信息抓取与Excel存储

内容概要:本文详细介绍了如何利用 Python 编程语言,借助 BeautifulSoup 和正则表达式等工具,从安居客网站上抓取二手房信息,并将其存储到 Excel 文件中。文章提供了完整的代码示例,涵盖页面请求、HTML 解析、数据提取和 Excel 存储等功能。 适合人群:具备基本 Python 编程能力和对网络爬虫有一定了解的技术爱好者、学生及开发人员。 使用场景及目标:本代码适用于需要批量获取房地产市场信息的场景,如房地产研究、数据分析等。主要目的是帮助用户自动化地收集二手房信息,减少手动操作的时间和劳动成本。 其他说明:在使用过程中需要注意合规性和法律风险,避免滥用爬虫导致网站运营受影响。此外,代码可以根据具体需求进行适当调整,如增加更多的数据字段或优化性能。

2024-12-27

基于Python的笔趣阁小说网站爬虫实现

内容概要:本文详细介绍了如何利用 Python 编写一个简单的网络爬虫来抓取笔趣阁小说网站上的小说章节链接和标题。通过引入 BeautifulSoup 和正则表达式库对 HTML 页面进行解析,提取所需信息并将其保存为 Excel 文件。文中具体实现了请求页面、解析数据、异常处理以及将数据写入 Excel 的各个步骤。 适合人群:初学者和有一定编程基础的开发者,特别是那些希望了解 Web 抓取基础知识的人。 使用场景及目标:适用于需要自动化收集特定网站数据的场景。学习如何构造请求头,使用第三方库解析页面内容,以及掌握基本的数据存储方法。通过本项目的实际操作,能够更好地理解 Python 在 Web 技术领域的应用。 其他说明:文中提供了完整的代码示例,可以直接运行,有助于快速上手实战练习。同时也强调了对网页源代码的理解和解析技巧。

2024-12-27

PyCharm相关资源分享链接

PyCharm相当于Python的工具,占据着重要作用,类似于Java和IDEA一样

2024-12-25

Python-3.7.4的资源包

一、概述 Python-3.7.4是Python编程语言的一个特定版本,属于Python 3系列。Python是一种广泛使用的高级编程语言,以其清晰的语法和代码可读性而受到开发者们的喜爱。Python 3.7.4版本针对Python程序进行了优化和改进,提供了更稳定、更高效的编程环境。 二、版本特性 Python 3.7.4引入了多项新特性和改进,包括: 数据类(data classes):用于创建不可变的类,便于管理对象状态。 字典性能提升:特别是键的插入和访问速度得到改进。 f-string支持:更多的表达式,简化了字符串格式化操作。 异步编程改进:添加了异步循环(async for)和异步上下文管理器(async with),提高了异步编程的灵活性。 三、资源包内容 Python-3.7.4的资源包通常包含以下内容: Python解释器:用于执行Python代码的核心组件。 标准库:提供了大量的模块,如os模块用于操作系统交互,sys模块获取系统相关信息,math模块提供数学函数等。 开发文档:包括语法、标准库、高级主题以及编程指南等,是开发者学习和参考的宝贵资料。 四、安

2024-12-24

Bitvisse SSH Client安装包或者是BvSshClient安装包

BvSshClient是一款功能强大的SSH客户端软件,以下是对其的详细介绍: 一、基本概述 软件名称:BvSshClient 软件类型:SSH客户端软件 运行环境:Windows操作系统 二、主要功能 支持SSH协议:BvSshClient支持SSH2协议,确保用户可以通过安全的通道连接到远程服务器。 图形化界面:提供了一个易于使用的图形化界面,用户可以轻松地进行远程SSH服务器的连接和管理。 身份验证方式:支持密码和公钥身份验证,确保用户能够安全地连接到远程服务器。 与常用SSH服务器配合使用:可以与OpenSSH、OpenSSH for Windows和Dropbear等常用的SSH服务器配合使用,兼容性良好。 远程端口转发:支持远程端口转发功能,方便用户进行端口映射和访问。 SOCKS代理:提供SOCKS代理功能,用户可以通过代理进行安全的网络访问。 SFTP文件传输:支持SFTP文件传输功能,用户可以在本地和远程服务器之间进行文件传输。 X11转发:支持X11转发功能,用户可以在远程主机上运行图形界面应用程序,并在本地显示结果。 命令行终端:提供了一个命令行终端,用户可以在

2024-12-20

JDK11安装包文件夹资源

JDK11安装包文件夹资源,JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,JDK11安装包JDK11安装包,J

2024-12-20

《我是刑警》的人物关系数据集

《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑警》的人物关系数据集,主要描述所有人物之间的关系数据,《我是刑

2024-12-20

Neo4j安装包资源包

Neo4j是一个高性能的、基于图的数据库管理系统(Graph Database Management System,GDBMS),它采用图数据模型来存储数据,非常适合表示复杂的数据结构和关系。以下是对Neo4j的详细介绍: 一、图数据模型 Neo4j的图数据模型由节点(Nodes)、关系(Relationships)和属性(Properties)组成。节点用于表示实体,如人、物品或概念等,而关系则用于表示这些实体之间的联系。每个节点和关系都可以包含键值对形式的属性,用于描述它们的特征和状态。这种模型非常适合表示复杂的数据结构和关系,如社交网络、推荐系统、知识图谱等。 二、高性能 Neo4j通过其独特的图存储引擎和查询语言Cypher,实现了对图数据的快速检索和查询。它采用嵌入式、高性能、轻量级的设计,能够处理大量复杂、互连接、低结构化的数据,并且在查询速度方面非常高效。即使对于深度和复杂的查询,Neo4j也能快速响应,提供实时的数据访问和分析能力。 三、Cypher查询语言 Cypher是Neo4j专属的查询语言,它直观且功能强大,使得用户可以轻松地编写查询来探索数据之间的关系。

2024-12-19

VMWare安装包链接

所谓的虚拟机,就是在当前计算机系统中,又开启了一个虚拟系统。这个虚拟系统,就是我们要安装的Linux系统,一般情况下开发使用windows,部署Linux系统上,Linux系统原生态状态下,基本没有任何软件,易用性差,又因为Linux系统是开源,所以很多人为了让Linux系统变的易用一些,提供了很多默认安装的软件,市面上有很多人在使用CentOS、RockyLinux、Ubantu等等。我们使用的Linux系统大多是别人写好的:应用程序+Linux内核,Linux内核最初是由林纳斯·托瓦斯在使用unix时感觉不好用,自己写了一个Linux。Linux支持多用户、多任务、多线程和多CPU的。支持32位和64位的硬件。现在大部分都是使用64位 原文链接:https://blog.csdn.net/Z0412_J0103/article/deta

2024-12-19

otp-win64-26.2.1的安装包

当前版本为官方的otp_win64_26.2.1的版本,需要下载该资源,还得下载对应的RabbitMQ安装包,我的资源中也有该安装包,直接到我的主页即可查询到。

2024-11-21

RabbitmMQ的安装包

当前版本为官方的RabbitmMQ-Server-4.0.3的版本,需要下载该资源,还得下载对应的Erlang安装包,我的资源中也有该安装包,直接到我的主页即可查询到。

2024-11-21

深度学习实验报告 - TensorFlow基础训练(张量操作与应用)

内容概要:本文档是关于《计算机与信息工程学院》的实验报告,实验主题为“TensorFlow基础训练”。主要内容涉及了TensorFlow张量的操作,包括基础操作与高级操作如张量创建、标量、向量、矩阵、索引、切片、维度变换、Broadcasting等,并详细讲解了如何利用TensorFlow进行简单的前向传播实现。 适合人群:本实验适用于计算机与信息工程专业的大学生、研究生,特别是那些正在研究或对深度学习领域感兴趣的学生。 使用场景及目标:① 学生可以通过动手实践进一步理解和掌握TensorFlow的基本操作;② 通过实验加深对张量特性的认识,为进一步学习复杂的深度学习模型打好基础。 阅读建议:在完成理论部分的学习后,应跟随本实验的步骤进行实际编程练习。对于初学者来说,先了解TensorFlow的基础概念再进行实践将会更有助于理解。建议边学习边动手编码,通过修改代码来尝试不同的设置效果,以此增强实践能力。

2024-11-19

Python环境配置与数据分析编程练习

内容概要:本文档介绍了Windows环境下Anaconda平台的安装流程及其核心功能,包括Numpy和Pandas两个关键库的应用技巧。重点探讨了使用Pandas进行电影评分数据分析的具体步骤,如数据预处理、统计分析及可视化的实施方法。 适合人群:计算机专业的在校生或者初学者,具有一定Python基础知识的技术人员。 使用场景及目标:帮助读者掌握Anaconda环境搭建技巧,提升运用Pandas完成实际数据项目的能力。学习如何利用Python及相关库处理、清洗复杂数据,并实现数据洞察的可视化展现。 阅读建议:对于希望深入理解数据科学流程的学生和技术工作者而言,动手尝试文档提供的代码案例是非常有必要的。实践过程中不仅要熟悉工具的基本操作,还需要关注代码背后的逻辑和数学原理。

2024-11-19

基于TensorFlow实现美食图片线性回归评分

内容概要:本文介绍了一个关于美食图片评分的实验项目,详细描述了从准备数据到模型预测整个过程的关键技术和代码实现方法。通过导入数据集并进行预处理之后,采用TensorFlow框架构建了一个简单的线性回归神经网络,实现了基于图像特征的打分系统。实验结果显示,在适当的参数设置下可以有效地评估出不同美食图片的质量。 适合人群:适合有一定编程经验的学生或者研究人员,尤其是对机器学习、深度学习以及图像识别感兴趣的人群。 使用场景及目标:本案例适用于初学者理解和实践机器学习的基本流程和技术要点,如TensorFlow编程环境搭建、线性回归模型的应用等。同时也可以为后续开展更多复杂的深度学习任务奠定坚实的基础。 其他说明:文中提供的所有代码均为具体可执行的例子,读者可以根据自身情况调整参数来优化模型性能。此外,还鼓励尝试更换新的数据集,以便探索不同的应用场景。

2024-11-19

深度学习实验:TensorFlow 张量的基本及高级操作技巧教程

内容概要:本篇文章详细介绍了使用 TensorFlow 进行张量的各种操作,从基础的操作开始,比如张量的数据类型和维度变换,到高级的技术,例如张量的合并与分割、张量的填充与限制等,涵盖了广泛的张量操作,帮助理解深度学习算法中常见的张量操作流程和技术。 适合人群:对于 TensorFlow 初学者来说非常友好,特别适用于希望通过实践提升深度学习项目中张量操作能力的研发人员。 使用场景及目标:适用于想要深入了解和掌握 TensorFlow 张量基础知识及其扩展操作的应用开发者或者研究人员,旨在提供详细的实操指导,便于更好地在深度学习实践中运用。 其他说明:本文档不仅提供了理论讲解,还有实际代码示例,使学习者能够在做中学,有效提高对 TensorFLow 张量处理的理解与应用能力。

2024-11-19

实验六 正弦波产生电路记录.doc

一、实验目的 1.掌握正弦信号产生的基本原理和基本分析方法。 2.掌握方波信号产生的基本原理和基本分析方法。 3.了解电路参数的计算方法,各参数对电路性能的影响。 二、实验环境与器件 1.实验软件环境:Windows XP ·Multisim10 ; 2.硬件设备、器材:万用表﹑直流稳压电源﹑电阻。 三、实验内容与实验步骤 1.实验原理 正弦波振荡电路是一种具有正反馈网络的自激选频放大电路,谐振频率取决于正反馈选频网络的相关参数。理论上,为了维持稳定的振荡,在谐振频率上环路增益AF等于1。但为了容易起源,一般取环路的增益AF略大于1。当正弦波振荡电路达到等幅正弦振荡后,它的输出信号正弦波。 在Multisim中构建RC桥式(文氏)正弦波振荡电路实验电路,如图1所示。图中,放大器为同相比例运算放大电路,正反馈选频网络有RC串并联电路组成。D1、D2、R4并联后和Rf和R3组成反馈网络,以稳定和改善输出电压的波形,其中D1、D2和R4组成的并联支路的等效电阻近似为略小于R4的电阻值,有 式中,rd为二极管D1、D2动态电阻,可见A略大于3。随着输出电压v0的增加,D1、D

2024-10-29

实验六 正弦波产生电路.doc

一、实验目的 1.掌握正弦信号产生的基本原理和基本分析方法。 2.掌握方波信号产生的基本原理和基本分析方法。 3.了解电路参数的计算方法,各参数对电路性能的影响。 二、实验环境与器件 1.实验软件环境:Windows XP ·Multisim10 ; 2.硬件设备、器材:万用表﹑直流稳压电源﹑电阻。 三、实验内容与实验步骤 1.实验原理 正弦波振荡电路是一种具有正反馈网络的自激选频放大电路,谐振频率取决于正反馈选频网络的相关参数。理论上,为了维持稳定的振荡,在谐振频率上环路增益AF等于1。但为了容易起源,一般取环路的增益AF略大于1。当正弦波振荡电路达到等幅正弦振荡后,它的输出信号正弦波。 在Multisim中构建RC桥式(文氏)正弦波振荡电路实验电路,如图1所示。图中,放大器为同相比例运算放大电路,正反馈选频网络有RC串并联电路组成。D1、D2、R4并联后和Rf和R3组成反馈网络,以稳定和改善输出电压的波形,其中D1、D2和R4组成的并联支路的等效电阻近似为略小于R4的电阻值,有 式中,rd为二极管D1、D2动态电阻,可见A略大于3。随着输出电压v0的增加,D1、D

2024-10-29

实验五 研究和验证负反馈放大器性能记录

一、实验目的 1.研究和验证负反馈放大器性能的影响 2.掌握负反馈放大器主要特点及其性能指标的测试方法 3.学会正确使用集成运算放大电路 4.掌握比例运算电路的设计和调试方法 二、实验环境与器件 WindowsXP、Multisim10(函数信号发生器、示波器、万用表) 三、实验内容与实验步骤 1、实验原理 (1)基本概念 ① 理想运放、虚短、虚断 ② 负反馈放大器有4只种组态或形式 即电压串联、电压并联、电流串联和电流并联负反馈 电压负反馈能起到稳定输出电压,降低放大器输出电阻的作用;电流负反馈能起到稳定输出电流,提高放大器的输出电阻的作用。 串联负反馈能调高放大器的输入电阻,并联负反馈能降低放大器的输入电阻 1.集成运算放大器的线性运用 A.反向比例运算电路 电路图如图一所示,对于理想运放,该电路的输出电压与输入电压之间的关系为: U0 =-Ui 为了减小输入级偏置电流引起的运算误差,在同相输入端应介入平衡电R2=R1||Rf B、反向加法运算电路 电路如图1所示,对于联想运放,该电路的输出电压与输入电压之间的关系为 U0=-(Ui

2024-10-29

实验五 研究和验证负反馈放大器性能

一、实验目的 1.研究和验证负反馈放大器性能的影响 2.掌握负反馈放大器主要特点及其性能指标的测试方法 3.学会正确使用集成运算放大电路 4.掌握比例运算电路的设计和调试方法 二、实验环境与器件 WindowsXP、Multisim10(函数信号发生器、示波器、万用表) 三、实验内容与实验步骤 1、实验原理 (1)基本概念 ① 理想运放、虚短、虚断 ② 负反馈放大器有4只种组态或形式 即电压串联、电压并联、电流串联和电流并联负反馈 电压负反馈能起到稳定输出电压,降低放大器输出电阻的作用;电流负反馈能起到稳定输出电流,提高放大器的输出电阻的作用。 串联负反馈能调高放大器的输入电阻,并联负反馈能降低放大器的输入电阻 1.集成运算放大器的线性运用 A.反向比例运算电路 电路图如图一所示,对于理想运放,该电路的输出电压与输入电压之间的关系为: U0 =-Ui 为了减小输入级偏置电流引起的运算误差,在同相输入端应介入平衡电R2=R1||Rf B、反向加法运算电路 电路如图1所示,对于联想运放,该电路的输出电压与输入电压之间的关系为 U0=-(Ui

2024-10-29

三极管的判断及共发射极放大电路实验记录

一、实验目的 1、学会用指针式万用表简易判别三极管的极性和类型的方法 2、掌握放大器静态工作点的调试方法。 3、了解电路中各元件参数值对静态工作点的影响。 4、掌握放大器的主要性能指标的调试方法。 二、实验环境与器件 数字万用表、指针式万用表、函数信号发生器 双踪示波器、毫伏表、三极管电阻和电容、Multisim 三、实验内容与实验步骤 1.实验原理 (1)三极管的极性及类型判别 用指针式万用表判别三极管的极性,其测量原理主要根据万用表的内部结构和PN结的单相导电性进行 ① “两大两小”判断类型,找到基极B ② 构建放大状态,确定集电极c和发射极。 (2)共发射极放大电路 ① 分压式偏置式共射电路静态工作点的估算与调整; 图1分压偏置式共射电路 图1所示电路的直流通路知: ② 放大电路的动态指标:交流电压放大倍数、输入电阻、输出电阻、通频带。 由图一所示电路的交流通路知: 通频带衡量放大电路对不同频率信号的适应能力。由于电容、电感及半导体原件的电容效应,是放大电路在信号频率较低和较高时电压放大倍数值下降,并产生相移,如图二所示: 2、实验步骤 (1)正确设计

2024-10-29

实验四 三极管的判断及共发射极放大电路

一、实验目的 1、学会用指针式万用表简易判别三极管的极性和类型的方法 2、掌握放大器静态工作点的调试方法。 3、了解电路中各元件参数值对静态工作点的影响。 4、掌握放大器的主要性能指标的调试方法。 二、实验环境与器件 数字万用表、指针式万用表、函数信号发生器 双踪示波器、毫伏表、三极管电阻和电容、Multisim 三、实验内容与实验步骤 1.实验原理 (1)三极管的极性及类型判别 用指针式万用表判别三极管的极性,其测量原理主要根据万用表的内部结构和PN结的单相导电性进行 ① “两大两小”判断类型,找到基极B ② 构建放大状态,确定集电极c和发射极。 (2)共发射极放大电路 ① 分压式偏置式共射电路静态工作点的估算与调整; 图1分压偏置式共射电路 图1所示电路的直流通路知: ② 放大电路的动态指标:交流电压放大倍数、输入电阻、输出电阻、通频带。 由图一所示电路的交流通路知: 通频带衡量放大电路对不同频率信号的适应能力。由于电容、电感及半导体原件的电容效应,是放大电路在信号频率较低和较高时电压放大倍数值下降,并产生相移,如图二所示: 2、实验步骤 (1)正确设计

2024-10-29

二极管的判断及直流稳压电源电路模型

一、实验目的 1.掌握二极管伏安特性 2.了解单相整流、滤波和稳压电源的工作原理 3.学会直流稳压电源电路的设计与调测方法 4.掌握集成稳压器的特点,会合理选择和使用 二、实验环境与器件 1.实验软件环境:Windows XP ·Multisim10 ; 2.硬件设备、器材:万用表﹑直流稳压电源﹑电阻。 三、实验内容与实验步骤 1.实验内容 (1)二极管伏安特性 正向导通、反向截止 (2)直流稳压电源的组成 (3)几种典型的集成稳压器 2.实验操作步骤 (1)二极管伏安特性 (2)直流稳压电源实验电路 ①搭建半波整流电路 测量输出电压波形 ②搭建单相桥式整流电路 测量输出电压波形 ③增加滤波电路 ④增加稳压电路 测量输出电压波形,该部分电路与波形参数 三、实验结果与分析 (1)实验结果

2024-10-29

电路实验三 二极管的判断及直流稳压电源电路

一、实验目的 1.掌握二极管伏安特性 2.了解单相整流、滤波和稳压电源的工作原理 3.学会直流稳压电源电路的设计与调测方法 4.掌握集成稳压器的特点,会合理选择和使用 二、实验环境与器件 1.实验软件环境:Windows XP ·Multisim10 ; 2.硬件设备、器材:万用表﹑直流稳压电源﹑电阻。 三、实验内容与实验步骤 1.实验内容 (1)二极管伏安特性 正向导通、反向截止 (2)直流稳压电源的组成 (3)几种典型的集成稳压器 2.实验操作步骤 (1)二极管伏安特性 (2)直流稳压电源实验电路 ①搭建半波整流电路 测量输出电压波形 ②搭建单相桥式整流电路 测量输出电压波形 ③增加滤波电路 ④增加稳压电路 测量输出电压波形,该部分电路与波形参数

2024-10-29

settings.xml

一、文件位置 settings.xml文件通常存在于两个位置: Maven安装目录下的conf文件夹中,这是全局配置文件。 用户家目录下的.m2文件夹中,这是用户级配置文件。用户级配置会覆盖全局配置中的相应设置。如果.m2文件夹中没有settings.xml文件,Maven将使用全局配置中的settings.xml。 二、作用 settings.xml文件用于定制Maven的运行方式,包括本地仓库的位置、插件组、服务器配置、镜像、激活的配置文件、配置文件以及代理配置等。通过合理配置settings.xml,可以优化Maven的依赖下载速度,保障仓库访问的安全性,甚至实现私有仓库的搭建与管理。 三、主要配置项

2024-10-25

电路实验二 验证戴维南定理模型

一、实验目的 1.验证戴维南定理的正确性,加深对等效电源电路的理解 2.掌握有源二端网络等效参数的一般测量方法 3.进一步学习常用直流仪器仪表的使用方法二﹑实验仪器及元器件 二、实验环境与器件 (1)实验软件环境 Windows XP Multisim10 (2)硬件设备、器材 万用表﹑直流稳压电源﹑电阻 三、实验内容与实验步骤 1.实验内容 (1)基本概念 二端网络:一般来说是具体两个接线端的部分电路; 无源二端网络:内部不含电源的二端网络; 有源二端网络:内部含有电源的二端网路。 (2)戴维南定理 任何一个线性含源二端网络(单口网络),对外部电路而言,总可以用一个理想电压源和一个电阻元件相串联的有源支路来代替·其中,理想电压源等于这个有源 二端网络的开路电压Uoc,电阻等于该网络中所有独立电源均置零(电压源置零可理解为短路,电流源置零可理解为开路)后的等效电阻R。 (3)有源二端网络等效参数的测量方法 A.开路电压——短路电流法 在线性有源二端网络输出端开路时,用电压表直接测其输出端的开路电压 Uoc,然后再将其输出端短路,测其短路电流lsc,其内阻为:Uoc/lsc。 B.测

2024-10-25

电路基础实验二 戴维南定理的验证

一、实验目的 1.验证戴维南定理的正确性,加深对等效电源电路的理解 2.掌握有源二端网络等效参数的一般测量方法 3.进一步学习常用直流仪器仪表的使用方法二﹑实验仪器及元器件 二、实验环境与器件 (1)实验软件环境 Windows XP Multisim10 (2)硬件设备、器材 万用表﹑直流稳压电源﹑电阻 三、实验内容与实验步骤 1.实验内容 (1)基本概念 二端网络:一般来说是具体两个接线端的部分电路; 无源二端网络:内部不含电源的二端网络; 有源二端网络:内部含有电源的二端网路。 (2)戴维南定理 任何一个线性含源二端网络(单口网络),对外部电路而言,总可以用一个理想电压源和一个电阻元件相串联的有源支路来代替·其中,理想电压源等于这个有源 二端网络的开路电压Uoc,电阻等于该网络中所有独立电源均置零(电压源置零可理解为短路,电流源置零可理解为开路)后的等效电阻R。 (3)有源二端网络等效参数的测量方法 A.开路电压——短路电流法 在线性有源二端网络输出端开路时,用电压表直接测其输出端的开路电压 Uoc,然后再将其输出端短路,测其短路电流lsc,其内阻为:Uoc/lsc。 B.测

2024-10-25

电路基础实验一 电路叠加定理的验证记录结果

一、实验目的 1.验证线性电路叠加定理的正确性,加深对线性电路叠加性和齐次性的认识。 2.加深对电路参考方向的认识。 3.通过实验掌握电路电参数的测量方法,熟悉相关仪表的使用。 二、实验环境与器件 1.实验软件环境:Windows XP ·Multisim10 ; 2.硬件设备、器材:万用表﹑直流稳压电源﹑电阻。 三、实验内容与实验步骤 1.实验内容 (1)基本概念 线性电路:由线性元件构成的电路称为线性电路。 齐次性:在线性电路中,如果所有激励(即独立源)都增大(或减小)k倍,则电路中响应(电压或电流〉也将增大(或减小)同样的倍数,即将电路中所有激励均乘以常数k,所有响应也应乘以同一个常数k。 (2)叠加定理 在线性电路中,有多个独立源共同作用时在任意支路产生的电流或电压,都可以认为是电路中各个独立源单独作用而其他电源不作用时,在该支路中产生的各电流分量或电压分量的代数和。 2.实验操作步骤 (1)正确组装连接实验电路图 (2)验证叠加定理 (3)①设定电路中所有支路电流和支路电压的参考方向,并标注在电路图中; ②设定电路中所有支路电流好额支路电压的参考方向,并标注在电路

2024-10-25

电路基础实验一 电路叠加定理的验证

一、实验目的 1.验证线性电路叠加定理的正确性,加深对线性电路叠加性和齐次性的认识。 2.加深对电路参考方向的认识。 3.通过实验掌握电路电参数的测量方法,熟悉相关仪表的使用。 二、实验环境与器件 1.实验软件环境:Windows XP ·Multisim10 ; 2.硬件设备、器材:万用表﹑直流稳压电源﹑电阻。 三、实验内容与实验步骤 1.实验内容 (1)基本概念 线性电路:由线性元件构成的电路称为线性电路。 齐次性:在线性电路中,如果所有激励(即独立源)都增大(或减小)k倍,则电路中响应(电压或电流〉也将增大(或减小)同样的倍数,即将电路中所有激励均乘以常数k,所有响应也应乘以同一个常数k。 (2)叠加定理 在线性电路中,有多个独立源共同作用时在任意支路产生的电流或电压,都可以认为是电路中各个独立源单独作用而其他电源不作用时,在该支路中产生的各电流分量或电压分量的代数和。 2.实验操作步骤 (1)正确组装连接实验电路图 (2)验证叠加定理 (3)①设定电路中所有支路电流和支路电压的参考方向,并标注在电路图中; ②设定电路中所有支路电流好额支路电压的参考方向,并标注在电路

2024-10-25

电路基础-nidmsrv软件

NIDMSRV(通常表现为nidmsrv.exe进程)与National Instruments(美国国家仪器公司,简称NI)的LabVIEW软件紧密相关。LabVIEW是一种图形化的编程语言,广泛用于快速创建灵活且可升级的测试、测量和控制应用程序。以下是NIDMSRV的主要用处及相关功能概述: 一、作为LabVIEW相关程序 NIDMSRV是LabVIEW软件的一部分,它可能涉及到软件内部的一些服务或进程,这些服务或进程对于LabVIEW的正常运行或特定功能的实现至关重要。例如,它可能用于支持LabVIEW中的网络通信、远程访问或数据共享等功能。 二、支持Web服务部署 在LabVIEW环境中,NIDMSRV可能与NI的Web服务器相关,用于部署和托管Web服务应用程序。这些Web服务可以使得LabVIEW创建的应用程序能够通过Web浏览器进行访问和控制。这对于需要远程监控或控制的应用场景特别有用。 具体来说,NI的Web服务器(如应用程序Web服务器、系统Web服务器或较新的基于Apache的NI Web服务器)可能会使用NIDMSRV来提供相关的Web服务。这些服务器允许开

2024-10-25

SQL练习资源-具体练习操作可以查看我发布的文章

drop database if exists hr; create database if not exists hr DEFAULT CHARACTER set utf8; use hr; drop table if exists departments; drop table if exists employees; drop table if exists jobs; drop table if exists locations; drop table if exists countries; drop table if exists regions; drop table if exists job_history; CREATE TABLE regions ( region_id int primary key auto_increment, region_name VARCHAR(25) ) engine=innodb default character set utf8; CREATE TABLE countries ( country_

2024-10-21

数据库驱动-mysql-connector-java-8.0.25.jar

mysql-connector-java-8.0.25.jar 是 MySQL 官方提供的 Java 连接器,具体来说,它是一个用于Java应用程序的数据库驱动程序。以下是关于其作用和功能的详细介绍: ① mysql-connector-java-8.0.25.jar 的主要作用是使 Java 开发者能够连接到 MySQL 数据库服务器并执行 SQL 操作。这个 JAR 文件包含了一个 JDBC(Java Database Connectivity)驱动程序,允许 Java 代码通过标准的 JDBC API 来连接和操作 MySQL 数据库。 ② 兼容性:该驱动程序与 MySQL 服务器的 8.0 系列版本兼容,支持所有在该版本中引入的新特性,如 JSON 列类型、窗口函数、改进的性能和安全性等。 ③ 稳定性:由于它是由 MySQL 官方提供的,因此确保了与 MySQL 服务器的兼容性和稳定性。 ④ 易于使用:开发者只需将 JAR 文件添加到 Java 项目的类路径中,并在代码中配置连接信息,即可轻松连接到 MySQL 数据库并执行 SQL 操作。 ⑤ 配置连接:在 Java 代码中配

2024-10-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除