线性代数 之 行列式

版权声明: https://blog.csdn.net/z1592570975/article/details/80686187

行列式(数):

i>j  ,(i,j)—— 逆序

逆序数:排列

行列式(方的):


代数余子式:


M(ij) : 余子式 ---去掉第i行,第j列, 剩余的行列式

上三角行列式:对角线有数,上三角全是零(结果等于对角线乘积)  //注意正负


V4 = (a4-a1)(a4-a2)(a4-a3)(a3-a1)(a3-a2)(a2-a1)

计算(转化成上三角行列式):根据性质

  1. D=D(T)      //转置
  2. 对调两行(列), 行列式变符号
  3. 一行(列) 含K 提取

推论:

  1. 一行为0, D = 0
  2. 两行(列) 成比例, D = 0

① 行列式 = 任一行(列) 的各元素与其对应的代数余子式乘积之和

② 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零

克拉默法则:

见课本(22页)

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页