题意: 给一副有向图,求节点1的最小值。限制:选择的节点的等级极差小于m
思路:在包含节点1的范围内枚举等级的范围(长度为m),然后dijkstra即可。
思路:在包含节点1的范围内枚举等级的范围(长度为m),然后dijkstra即可。
不过m的范围不明确,这个方法给出的真心。。不是很能忍啊,万一给m暴大怎么办?
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
using namespace std;
typedef __int64 lld;
typedef pair<int , int > P;
const int INF = ~0u>>1;
const int MOD = 1e9+7;
#define CIN(n) scanf("%d", &n)
#define clr(a,b) memset(a,b,sizeof(a))
#define REP(i,a,b) for(int i=a; i<(b); i++)
#define FOR(i,a,b) for(int i=(a); i<=(b); i++)
#define FORP(i,a,b) for(int i=(a); i>=(b); i--)
#define PB push_back
#define MP make_pair
int max(int a, int b) { return a>b?a:b; }
int min(int a, int b) { return a<b?a:b; }
const int MAXN = 110;
int m,n;
struct E{
int to, w;
E(){}
E(int to, int w): to(to), w(w) {}
};
vector <E> edge[MAXN];
struct POINT{
int lv,w;
}nod[MAXN];
int dist[MAXN];
int ans;
int l, r;
priority_queue <P, vector<P>, greater<P> > que;
class NERO{
public:
void in() {
scanf("%d%d", &m, &n);
FOR(i,1,n) edge[i].clear();
FOR(i,1,n) {
int tt;
scanf("%d%d%d", &nod[i].w, &nod[i].lv, &tt);
while(tt--) {
int a,b;
scanf("%d%d", &a, &b);
edge[a].PB(E(i,b));
}
}
}
void gao(){
ans = INF;
for(int i=nod[1].lv-m; i<=nod[1].lv; i++) {
l = i;
r = i+m;
while(!que.empty()) que.pop();
FOR(j,1,n) {
dist[j] = nod[j].w;
if(l <= nod[j].lv && nod[j].lv <= r) que.push(P(dist[j],j));
dijkstra();
}
}
printf("%d\n", ans);
}
void dijkstra() {
while(!que.empty()) {
P p = que.top();
que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
REP(i,0,edge[v].size()) {
E e = edge[v][i];
if(nod[e.to].lv < l || nod[e.to].lv > r) continue;
if(dist[e.to] > dist[v] + e.w) {
dist[e.to] = dist[v] + e.w;
que.push(P(dist[e.to], e.to));
}
}
}
ans = min(ans , dist[1]);
}
}Nero;
int main(){
Nero.in();
Nero.gao();
return 0;
}