机器视觉

机器视觉,图形处理,VC++,C#

理解矩阵特征值及应用

将N阶对称矩阵A分解,用N个特征向量Q和特征值 Σ 来表示,不同特征值对应的特征向量是相互正交的。 特征向量和特征值可以很好的描述原始矩阵,方便后续应用。将矩阵投影在特征向量上,特征值即投影长度。特征值越大,表示矩阵在对应特征向量上信息量越大,导数越大。反之,特征值越小,表示信息量较少,也...

2015-09-23 16:00:47

阅读数:1513

评论数:0

傅立叶变换在图像处理中的应用

1、为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累...

2014-01-24 15:00:53

阅读数:4055

评论数:0

图像的矩

图像的矩 一幅图像的矩,是通过一定的公式计算出来的。明白这个公式背后的原理,对于初学者来说,有一定的困难。 这里,对图像的矩进行讲解。 ------------------------------若转载本文,请注明出自:www.opencvchina.com-----------------...

2012-12-24 18:06:48

阅读数:10707

评论数:1

Mahalanobis距离(马氏距离)

Mahalanobis距离(马氏距离) Mahalanobis距离是多维空间中两点相似性的度量,它本身不是聚类或者分类算法。 Mahalanobis距离与Euclidean距离(欧式距离)类似,不过还需除以空间的协方差矩阵。 如果协方差矩阵是单位矩阵,则Mahalanobis距离退化为Euc...

2012-12-20 10:36:04

阅读数:7177

评论数:1

协方差矩阵

浅谈协方差矩阵 声明:本文转自颖风的博客,原文地址:http://www.pinkyway.info/2010/08/31/covariance/   今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决...

2012-12-20 09:46:18

阅读数:1088

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭