自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(344)
  • 收藏
  • 关注

原创 Ollama 更新!本地跑 LLama3.2,轻量级+视觉能力,能媲美GPT-4o?

本文带大家本地跑了 Meta 最新开源的 Llama 3.2,并在票据识别任务上进行了实测。个人体验而言:Llama 系列,都得在中文指令数据上微调后,才能中文场景中使用,同等参数规模下,国产大模型其实更具性价比。如果对你有帮助,欢迎备用。

2024-11-13 11:25:26 421

原创 AI产品经理「100道面试」(非常详细)收藏这一篇就够了!(问题 + 答案)

以前总说AI是未来,但现在AI就是当下。面试题一般是对求职者相对比较综合的考察,,亦可通过面试题来测试自己对AI的认知程度。1.什么是机器学习?2.描述深度学习与传统机器学习的区别。3.什么是自然语言处理?4.如何评估一个机器学习模型的性能?5.什么是过拟合和欠拟合?6.请解释什么是神经网络。7.描述决策树和随机森林。8.什么是梯度下降?9.请解释什么是卷积神经网络?10.什么是迁移学习?11.如何评估一个新市场的机会?12.描述一个你进行的竞争分析。13.如何确定产品的定价策略。

2024-11-13 11:15:16 585

原创 花10分钟学会如何打造一个本地的,免费的,企业级的知识库问答系统

如何本地部署Ai大模型?如何将大模型商业化并且应用到企业上?相信这是不少朋友非常关心的话题。今天我就来教大家用Docker+Ollama+Dify打造一个的知识库问答系统。

2024-11-12 11:07:41 487

原创 终于讲清楚了!AI模型部署攻略手册全方位解析

此前,我们已经介绍了一些经典的CNN模型,CNN模型涨点策略,预训练和微调,损失函数,训练和推理,模型压缩和加速,今天就来聊聊AI模型的部署的那些事儿。你可能听说过AI模型,但你知道怎么把它们用到实际中去吗?这就是AI模型部署的魔力所在了。就像你烤了个蛋糕,AI模型部署就是把这个蛋糕从烤箱拿出来,放到盘子里,让大家都能尝到。那我们为什么要费这么大劲去部署AI模型呢?想象一下,你训练了一个识别图片中猫和狗的模型,你不把它放到手机上,大家怎么能随时拿出手机来玩这个“找不同”的游戏呢?

2024-11-12 11:02:48 723

原创 零基础入门大模型教程,2024最详细的学习路线,让你少走99%弯路!

目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。

2024-11-11 10:29:36 859

原创 深度解析AI大模型算法设计:基于180篇论文调研的全面综述,彻底梳理清晰思路!

算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。在过去的三年里,LLMs 被整合到 AD(LLM4AD)中取得了显著进展,在优化、机器学习、数学推理和科学发现等各个领域获得广泛研究和应用。鉴于这一领域的快速发展和广泛应用,进行系统性的回顾和总结既及时又必要。本文对 LLM4AD 的研究进行了系统性回顾。首先,我们概述和总结了现有研究。

2024-11-11 10:25:31 538

原创 告别网络依赖:如何轻松部署AI大模型,详细图文教你轻松实现AI模型的完全离线使用?

GPT4All 是一个强大的生态系统,它允许用户在本地运行自定义的大型语言模型。这些模型可以在 CPU、NVIDIA 以及 AMDGPU 上运行,支持隐私保护,不上传用户数据。GPT4All 提供了跨平台支持,可在 Windows、MacOS、Linux 上运行,并且由 NomicAI 支持和维护。

2024-11-10 11:18:28 547

原创 让你的电脑免费离线跑“ChatGPT“

没错。昨天的文章就是用 AI 生成的。今天这篇文章就教大家入门 AI 应用,在自己的电脑上部署大语言模型。下面进入正文。

2024-11-10 11:17:04 748

原创 仅一行代码,使LLaMA3在知识编辑任务上表现暴涨35%!您确定不来试试嘛?

基于 “Locate-then-Edit” 的知识编辑方法(如 ROME 和 MEMIT)允许在更新目标知识的同时保留其他知识。其首先通过因果追踪定位存储知识的参数 ,然后通过引入权重更新 来编辑这些参数。求解 的常见目标是同时最小化(1)新知识的输出误差 和(2)模型原本存储的其他知识的输出误差。尽管这种方法取得了成功,但它存在一个重要的局限:难以在更新误差 和保留误差 之间保持平衡。

2024-11-08 11:54:18 565

原创 详解如何从零构建Llama 3(含代码)!

我们已经成功地从零开始构建了自己的Llama 3模型。我们不仅实现了模型的架构,还成功地进行了训练,并能够执行推理以生成新的文本。值得注意的是,我们在相对有限的计算资源(Google Colab Notebook提供的免费GPU和RAM)下,在较短的时间内完成了这个过程。本文中的代码和方法主要用于教育和研究目的。在实际应用中,可能需要进行更多的优化和调整,以达到生产级别的性能和效果。

2024-11-08 11:39:27 1504

原创 全面本土化升级:结合本地知识库与大型模型,利用RAGFlow构建高效实用的医院医疗问诊助手!

使用Huggingface上的开源医疗数据集,借助 RAGFlow 搭建自己的本地医疗问诊助手。原理:RAGFlow是一个基于对文档深入理解的开源 RAG(检索增强生成)引擎。它的作用是可以让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成答案输出。

2024-11-06 10:48:31 678

原创 新加坡视角:创新实践之路——将人工智能应用于心血管疾病预防

改善心血管疾病(CVD)的上游初级预防将有助于更多人过上无心血管疾病的生活。然而,目前的心血管疾病初级预防措施仍然存在局限性,人工智能(AI)可能有助于弥补这些空白。本研究利用新加坡国立大学健康系统(NUHS)的数据信息能力,结合Endeavour AI系统和大型语言模型(LLM)工具,创建了一个能够实时捕捉和展示个体及地理层面心血管风险因素信息的仪表盘。1.通过,并实施有证据支持的干预措施,帮助患者在早期阶段管理健康,避免疾病发展。2.CardioSight平台利用AI和流式数据接口,

2024-11-06 10:47:39 998

原创 RAG 相关 AI 技术难点与解决方案

随着人工智能(AI)技术的不断进步,特别是在自然语言处理(NLP)领域,检索增强生成(RAG, Retrieval-Augmented Generation)技术作为一种焕发出新生命的框架,正在被广泛应用于更多应用场景中,如智能客服、文档搜索、自动化问答等。对于 AI 技术了解有限的读者来说,理解 RAG 的基本概念及其实现过程可能存在一定的难度,尤其是在向量表示、语义理解、模型训练等技术细节上。本文将从通俗易懂的角度出发,简单介绍 RAG 技术中的关键步骤和技术难点,并结合具体的解决方案进行详细分析。

2024-11-05 14:03:24 412

原创 RAG 2.0性能提升:优化索引与召回机制的策略与实践

本次分享题目为《RAG2.0 引擎设计挑战和实现》。RAG1.0 的痛点和解决方向如何有效 Chunking如何准确召回高级 RAG 和预处理RAG 未来如何发展对于上图所示的 RAG 架构模式,大家应该都比较熟悉。RAG 的标准流程包括四个阶段,即抽取(Extraction)、索引(Indexing)、检索(Retrieval)和生成(Generation)。RAG 通常会遇到如下一些挑战:第一个挑战是向量的召回无法满足要求,即命中率很低。

2024-11-05 14:01:56 518

原创 AI大模型之语言大模型在大数据BI上的应用实践

是将接入层的元数据二次建模,以星型模型或雪花模型方式构建模型关联关系,此处可使用拖拽建模和自动建模两种方式完成维度建模。首先,维度建模将复杂的业务抽象,以数据明细表或轻度汇总表的方式描述业务数据,降低了数据使用的难度。然后,基于数据标准体系规范元数据定义,消除理解歧义,提高模型的分析效率和准确性。最后,将标准的维度模型转化为可执行的SQL脚本,并封装成数据服务,交由联邦查询计算引擎调用。

2024-11-01 10:49:04 775

原创 利用法律AI大模型定向训练金融普法及金融解纷智能体

随着科技的飞速发展,人工智能在各个领域的应用不断拓展,智能体已经越来越深入应用于更为聚焦、具体的任务处理中。今天我们以金融治理中普法、解纷两个场景为例,探讨智能体在实践中的应用。全面加强监管、防范化解风险是目前金融工作的重点。

2024-11-01 10:48:08 732

原创 面向应用看AI,讯飞医疗焕新大模型

医疗大模型浪潮过去一年多来,大模型技术从最初的崭露头角到如今的遍地开花,市场竞争异常激烈。众多企业竞相布局,以强大的研发实力和资源储备为基石,力图在这片蓝海中占据一席之地。作为医疗人工智能领域的先行者,讯飞医疗在医疗大模型方面有着怎样的布局和实践呢?在第七届世界声博会暨2024科大讯飞全球1024开发者节上,刘庆峰表示,讯飞星火医疗大模型升级至2.0,在医疗海量知识问答、医疗复杂语言理解、医疗专业文书生成、医疗诊断治疗推荐、医疗多轮交互、医疗多模态交互等六大核心场景的能力上显著提升;

2024-10-31 21:37:35 636

原创 4种革新性AI Agent工作流设计模式全解析

AI Agent智能工作流在多个行业中展现出实际应用的巨大潜力,这些智能体在编程、研究和多模态任务处理等领域的应用,智能体工作流将在未来几年内极大扩展AI的能力边界。无疑,这四种设计模式的结合使用,不仅能够提升AI Agent在单个任务中的执行能力,还为它在更广泛的应用场景中进行协作和创新提供了可能。随着这些模式的进一步发展和完善,AI Agent将在未来的工作流程中发挥更加关键的作用,推动各行各业向智能化转型。

2024-10-31 21:35:28 1000

原创 一文详解大模型推理:从基础知识到 vLLM

希望第一个Token的时间(TTFT)非常短。如今,用户期望任何应用程序的响应时间理想情况下都要快于1秒。因此,用户等待开始接收第一个token的时间越短越好。这对于期望互动的聊天机器人尤为重要。TTFT的长度受许多因素影响,关键因素是预填充阶段的计算(提示的预处理)以及请求在用户请求接收后是否立即处理或是否需要在队列中等待。重要的是要注意,在没有负载的服务器上,TTFT可能与在负载很重的服务器上非常不同。

2024-10-30 11:22:55 796

原创 80w起!零成本快速入门大模型指南

今年招聘市场确实是好点了,我发现群友都在讨论,得赶快学点 AI 大模型。他们有的是想正式转到一些新兴的 AI 行业,需要系统的学习训练。更多的是想跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。这也可以理解,ChatGPT 推出仅一年半的时间,就将生成式 AI 推向主流。从谷歌到亚马逊,从百度到阿里,几乎所有科技巨头都在布局 AI,也直接影响到了招聘市场,大模型相关的岗位数量多了不少,年薪甚至达到 80W-90W。

2024-10-30 11:13:34 560

原创 学习大模型的详细计划,收藏这一篇就够了!

在开始学习大语言模型之前,建议确保你掌握了线性代数、概率论和微积分等数学基础。此外,需要对自然语言处理(NLP)和机器学习的基本概念有所了解。了解自然语言处理的历史、发展以及常用的技术和方法,如词向量表示、文本分类、语言生成等。掌握Python编程语言是学习大语言模型的必备技能。Python在NLP领域拥有广泛的支持和丰富的库,例如NLTK、spaCy和Transformers等,这些库可以帮助学习者更轻松地开展自然语言处理项目。:掌握深度学习的基本概念、常见神经网络结构和训练方法是理解大语言模型的关键。

2024-10-28 11:40:16 1802

原创 全面梳理:大模型LLM的基础知识学习!

但是,在AI Agent时代,很多情况下不需要把这些指令一个一个地指出来,只需要一句话就行了,比如说提供一个prompt“请帮我完成一个用户系统,它包含用户注册、登录、查询等功能”,然后大模型就会帮你去完成。这个生成的过程我们叫做面向目标的架构,具有。

2024-10-28 11:38:53 260

原创 揭秘48Kstar的Dify:如何大幅降低AI研发门槛,从巅峰降至基础层面

说白了,Dify 既能满足零基础小白,也能为进阶开发者提供足够的发挥空间。比如说,你想要让 AI 模型对某些特定领域的数据有更好的理解能力?没问题,Dify 支持你接入自己的数据集进行训练,还可以定制特定领域的 AI 模型。这就好比你买了一辆车,车子本身性能已经很好,但你还可以根据自己的需求对车子进行改装,比如换个发动机、加装新设备,而 Dify 就是这台车的改装平台。

2024-10-26 11:56:35 875

原创 LightRAG将GraphRAG落地门槛打下来了!_lightrag 部署

现有的RAG系统存在显著的局限性,包括依赖于平面数据表示和缺乏足够的上下文感知能力,这可能导致,无法捕捉。为了解决这些挑战,提出了,它将过程中。这一创新框架采用了,从低层次和高层次的知识发现中增强了全面信息检索。此外,图结构与向量表示的整合便于高效检索相关实体及其关系,。这种能力通过增量更新算法进一步增强,确保新数据能够及时整合,使系统在快速变化的数据环境中保持有效和响应性。并且。图基文本索引(Graph-Based Text Indexing)

2024-10-26 11:49:57 959

原创 NLP 经典面试题:RLHF 训练过程是怎么样的?DPO 如何解决RLHF存在问题?

本人是某双一流大学硕士生,也最近刚好准备参加 2024年秋招,在找大模型算法岗实习中,遇到了很多有意思的面试,所以将这些面试题记录下来,并分享给那些和我一样在为一份满意的offer努力着的小伙伴们!!!

2024-10-25 14:00:34 970

原创 LLM RAG面试问题大全!收藏这一篇轻松拿下offer!

A. 检索增强生成(RAG)是一种结合了基于检索的方法和生成模型来提高自然语言处理任务性能的方法。在RAG中,检索组件首先搜索大量文档,根据输入查询找到相关信息。然后,生成模型使用这些检索到的信息生成响应或输出。这种两步过程允许RAG利用检索方法的精确性和生成模型的灵活性。因此,它特别适用于需要基于外部知识理解和生成自然语言的任务。

2024-10-25 11:38:57 760

原创 大模型技术学习过程梳理,收藏这一篇就够了!

‍‍‍‍‍‍‍从大的方向上来说,大模型从技术到应用,主要涉及到以上几个大的模块;而每个模块又涉及到大量的技术和细节。比如打造不同任务的神经网络模型,强化学习,迁移学习,知识蒸馏,分布式训练与存储等;以及RAG使用的向量检索,向量数据库,语义理解等,还有复杂任务的思维链(CoT),模型训练使用的LoRa等微调方法。还有多模态模型中的知识对齐,数据融合等复杂技术。‍‍‍基于大模型开发的人工智能机器人,感兴趣的可以点击查看:

2024-10-24 10:29:00 722

原创 写给大模型新人的经验,刷到少走三年弯路!

最后,给准备入场大模型的新人几点建议:不要只关心 finetune,SFT,RLHF,作为系统性学习是 OK 的,切忌花太多精力。想做应用的,建议 focus 到某个垂直领域,比如对话机器人,问答系统,金融/医疗/教育方向,找一个具体的场景,把它做好,做深。多关心数据,data pipeline,高质量训练/测试集的构建经验,对数据的sense,是最直接,也是最适合用到未来工作当中的。大模型不只有算法,也可以有工程。

2024-10-22 11:45:44 897

原创 大模型微调实战:基于 LLaMAFactory 通过 LoRA 微调修改模型自我认知

本文主要分享如何使用 LLaMAFactory 实现大模型微调,基于 Qwen1.5-1.8B-Chat 模型进行 LoRA 微调,修改模型自我认知。本文的一个目的:基于模型进行微调,修改模型自我认证。修改前对于模型,用户问你是谁?时模型一般会回答我们希望在微调之后,对于同样的问题,模型能回答。

2024-10-22 11:36:22 741

原创 AI大模型的工作原理,如何回答你提出的问题?

当用户提出一个问题时,首先需要将其转化为机器可读的形式。这通常意味着将问题转换为文本格式。AI大模型可以接受各种输入形式,如语音、图像或视频,但最终都需要转换为文本数据才能进行处理。根据IBM的一项研究,目前有超过80%的企业数据以非结构化形式存在,如文本、图像和视频。这给AI系统的输入处理带来了巨大挑战,需要先将这些非结构化数据转换为机器可读的格式。一旦问题被转换为文本格式,AI大模型就会对其进行和。分词是将文本拆分为独立的词汇单元的过程。解析则是确定这些词汇在句子中的语法角色和关系。

2024-10-21 13:59:29 1007

原创 零基础小白如何入门大模型?(附学习路线)

这个问题,是个热门话题,但不是个好问题。因为,它基于不同的提问人、提问意图,会有不同的答案。对于一个职业发展初期的新人,提问的意图可能是:我要不要转行去大模型赛道,从而可以获得更快的职业发展?让我三年内直达 P8?对于一个职业发展晚期的"35岁危机"者,提问的意图可能是:我要不要转行去大模型赛道,从而可以避免被裁?可以给我职业生涯续命 10 年?

2024-10-21 13:55:33 1392

原创 一文读懂什么是AI大模型

云计算“春晚”云栖大会上,阿里云推出全球最强开源大模型Qwen2.5-72B,性能“跨量级”超越Llama3.1-405B,再登全球开源大模型王座。自2023年4月以来短短一年半时间,通义千问Qwen已长成仅次于Llama的世界级模型群。根据阿里云CTO周靖人公布的最新数据,截至2024年9月中旬,通义千问开源模型累计下载量已突破4000万,衍生大模型超5万个。技术上,国内AI大模型产业发展迅猛,头部厂商对GPT系列模型已基本完成全面对标。

2024-10-21 11:57:23 1036

原创 程序员转行的挑战与难点分析

尽管我在“大龄程序员的未来在何方”这篇文章里比较乐观地介绍了程序员保持竞争力的几个方向,但现实依然是残酷的:很多人将不得不离开软件开发工作,转型去从事其他职业。当你要这么做时,就会感慨:想不到一切竟如此艰难!你不禁会想起李白老先生的诗:噫吁嚱,危乎高哉!蜀道之难,难于上青天!那么,为什么会这么难呢?真有这么难吗?然后我们再来看看,在千难万难之中,怎样找到正确的突破姿势。

2024-10-18 10:55:57 821

原创 揭秘程序员转行热点:为何AI大模型工程师成为首选职业路径

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;• 更优质的项目可以为未来创新创业提供基石。

2024-10-18 10:53:17 562

原创 长上下文 LLMs 兴起,RAG 会成为历史吗?

随着大语言模型(LLMs)的上下文窗口不断扩大,您是否开始思考:我们还需要花费大量时间和资源来构建复杂的检索增强生成(RAG)系统吗?本文深入探讨了长上下文 LLMs 与 RAG 系统的优劣势,揭示了它们在实际应用中的表现差异。通过对最新四篇学术研究的全面分析,作者阐明了长上下文 LLMs 在某些任务中的优势,同时也指出了 RAG 系统在某些专业领域任务和成本效益方面仍具有优势。

2024-10-16 11:05:13 650

原创 学习使用LangGraph x GPT-Researcher构建一个多智能体架构的AI自主研究助理

本文为大家剖析一个,可以用来帮助进行各种综合的在线研究任务并输出报告。该应用基于以及开源的项目而构建,我们将为大家介绍与剖析这个应用,你可以在此基础上做简单改造(如修改分析数据源、提示词等),以适应自身需要。业务场景通常,如果需要从头开始一个主题(比如“生成式人工智能中的伦理偏见与公平性")的深入研究,我们最期望的是能够快速的获取多个来源的值得信赖的信息,这可能需要在多个网站之间不断点击与浏览,通过一系列检索、聚合、细化、整理等工作来完成任务。

2024-10-16 10:57:31 1014

原创 比尔·盖茨预言:Agent 智能体将如何改变世界

AI 智能体(Agent)是一种能够响应自然语言并根据对用户的了解完成许多不同任务的软件。它就像一个私人助理,可以帮助我们处理各种事务,从安排日程到撰写邮件,从预订旅行到购买商品,无所不能。

2024-10-15 11:04:27 992

原创 更快、更强、更经济!港大开源大模型RAG系统LightRAG

社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。转载自 | 新智元编辑 | LRST随着大语言模型(LLM)自身能力的日趋完善,很多学者的目光聚焦于如何帮助大模型处理和感知大规模的私有数据库。

2024-10-15 11:03:18 1046

原创 大模型学习攻略,收藏这篇就够了!

在掌握机器学习之前,理解支撑这些算法的基本数学概念非常重要。:这是理解许多算法(特别是深度学习算法)的关键。主要概念包括向量、矩阵、行列式、特征值和特征向量、向量空间以及线性变换。:许多机器学习算法涉及到连续函数的优化,这需要理解导数、积分、极限和级数。多变量微积分以及梯度的概念也很重要。:这些知识对于理解模型如何从数据中学习并进行预测至关重要。主要概念包括概率理论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计和贝叶斯推断。有的时候临时抱佛脚也是可以的。

2024-10-14 11:34:02 1802

原创 AI大模型修炼攻略:一篇文章助你提升核心竞争力

大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问题,然后给出回答,或者根据你给它的提示,生成一篇文章、一个故事,甚至是一段代码。

2024-10-14 11:33:13 859

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除