Ollama 更新!本地跑 LLama3.2,轻量级+视觉能力,能媲美GPT-4o? 本文带大家本地跑了 Meta 最新开源的 Llama 3.2,并在票据识别任务上进行了实测。个人体验而言:Llama 系列,都得在中文指令数据上微调后,才能中文场景中使用,同等参数规模下,国产大模型其实更具性价比。如果对你有帮助,欢迎备用。
AI产品经理「100道面试」(非常详细)收藏这一篇就够了!(问题 + 答案) 以前总说AI是未来,但现在AI就是当下。面试题一般是对求职者相对比较综合的考察,,亦可通过面试题来测试自己对AI的认知程度。1.什么是机器学习?2.描述深度学习与传统机器学习的区别。3.什么是自然语言处理?4.如何评估一个机器学习模型的性能?5.什么是过拟合和欠拟合?6.请解释什么是神经网络。7.描述决策树和随机森林。8.什么是梯度下降?9.请解释什么是卷积神经网络?10.什么是迁移学习?11.如何评估一个新市场的机会?12.描述一个你进行的竞争分析。13.如何确定产品的定价策略。
花10分钟学会如何打造一个本地的,免费的,企业级的知识库问答系统 如何本地部署Ai大模型?如何将大模型商业化并且应用到企业上?相信这是不少朋友非常关心的话题。今天我就来教大家用Docker+Ollama+Dify打造一个的知识库问答系统。
终于讲清楚了!AI模型部署攻略手册全方位解析 此前,我们已经介绍了一些经典的CNN模型,CNN模型涨点策略,预训练和微调,损失函数,训练和推理,模型压缩和加速,今天就来聊聊AI模型的部署的那些事儿。你可能听说过AI模型,但你知道怎么把它们用到实际中去吗?这就是AI模型部署的魔力所在了。就像你烤了个蛋糕,AI模型部署就是把这个蛋糕从烤箱拿出来,放到盘子里,让大家都能尝到。那我们为什么要费这么大劲去部署AI模型呢?想象一下,你训练了一个识别图片中猫和狗的模型,你不把它放到手机上,大家怎么能随时拿出手机来玩这个“找不同”的游戏呢?
零基础入门大模型教程,2024最详细的学习路线,让你少走99%弯路! 目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。
深度解析AI大模型算法设计:基于180篇论文调研的全面综述,彻底梳理清晰思路! 算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。在过去的三年里,LLMs 被整合到 AD(LLM4AD)中取得了显著进展,在优化、机器学习、数学推理和科学发现等各个领域获得广泛研究和应用。鉴于这一领域的快速发展和广泛应用,进行系统性的回顾和总结既及时又必要。本文对 LLM4AD 的研究进行了系统性回顾。首先,我们概述和总结了现有研究。
告别网络依赖:如何轻松部署AI大模型,详细图文教你轻松实现AI模型的完全离线使用? GPT4All 是一个强大的生态系统,它允许用户在本地运行自定义的大型语言模型。这些模型可以在 CPU、NVIDIA 以及 AMDGPU 上运行,支持隐私保护,不上传用户数据。GPT4All 提供了跨平台支持,可在 Windows、MacOS、Linux 上运行,并且由 NomicAI 支持和维护。
仅一行代码,使LLaMA3在知识编辑任务上表现暴涨35%!您确定不来试试嘛? 基于 “Locate-then-Edit” 的知识编辑方法(如 ROME 和 MEMIT)允许在更新目标知识的同时保留其他知识。其首先通过因果追踪定位存储知识的参数 ,然后通过引入权重更新 来编辑这些参数。求解 的常见目标是同时最小化(1)新知识的输出误差 和(2)模型原本存储的其他知识的输出误差。尽管这种方法取得了成功,但它存在一个重要的局限:难以在更新误差 和保留误差 之间保持平衡。
详解如何从零构建Llama 3(含代码)! 我们已经成功地从零开始构建了自己的Llama 3模型。我们不仅实现了模型的架构,还成功地进行了训练,并能够执行推理以生成新的文本。值得注意的是,我们在相对有限的计算资源(Google Colab Notebook提供的免费GPU和RAM)下,在较短的时间内完成了这个过程。本文中的代码和方法主要用于教育和研究目的。在实际应用中,可能需要进行更多的优化和调整,以达到生产级别的性能和效果。
全面本土化升级:结合本地知识库与大型模型,利用RAGFlow构建高效实用的医院医疗问诊助手! 使用Huggingface上的开源医疗数据集,借助 RAGFlow 搭建自己的本地医疗问诊助手。原理:RAGFlow是一个基于对文档深入理解的开源 RAG(检索增强生成)引擎。它的作用是可以让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成答案输出。
新加坡视角:创新实践之路——将人工智能应用于心血管疾病预防 改善心血管疾病(CVD)的上游初级预防将有助于更多人过上无心血管疾病的生活。然而,目前的心血管疾病初级预防措施仍然存在局限性,人工智能(AI)可能有助于弥补这些空白。本研究利用新加坡国立大学健康系统(NUHS)的数据信息能力,结合Endeavour AI系统和大型语言模型(LLM)工具,创建了一个能够实时捕捉和展示个体及地理层面心血管风险因素信息的仪表盘。1.通过,并实施有证据支持的干预措施,帮助患者在早期阶段管理健康,避免疾病发展。2.CardioSight平台利用AI和流式数据接口,
RAG 相关 AI 技术难点与解决方案 随着人工智能(AI)技术的不断进步,特别是在自然语言处理(NLP)领域,检索增强生成(RAG, Retrieval-Augmented Generation)技术作为一种焕发出新生命的框架,正在被广泛应用于更多应用场景中,如智能客服、文档搜索、自动化问答等。对于 AI 技术了解有限的读者来说,理解 RAG 的基本概念及其实现过程可能存在一定的难度,尤其是在向量表示、语义理解、模型训练等技术细节上。本文将从通俗易懂的角度出发,简单介绍 RAG 技术中的关键步骤和技术难点,并结合具体的解决方案进行详细分析。
RAG 2.0性能提升:优化索引与召回机制的策略与实践 本次分享题目为《RAG2.0 引擎设计挑战和实现》。RAG1.0 的痛点和解决方向如何有效 Chunking如何准确召回高级 RAG 和预处理RAG 未来如何发展对于上图所示的 RAG 架构模式,大家应该都比较熟悉。RAG 的标准流程包括四个阶段,即抽取(Extraction)、索引(Indexing)、检索(Retrieval)和生成(Generation)。RAG 通常会遇到如下一些挑战:第一个挑战是向量的召回无法满足要求,即命中率很低。
AI大模型之语言大模型在大数据BI上的应用实践 是将接入层的元数据二次建模,以星型模型或雪花模型方式构建模型关联关系,此处可使用拖拽建模和自动建模两种方式完成维度建模。首先,维度建模将复杂的业务抽象,以数据明细表或轻度汇总表的方式描述业务数据,降低了数据使用的难度。然后,基于数据标准体系规范元数据定义,消除理解歧义,提高模型的分析效率和准确性。最后,将标准的维度模型转化为可执行的SQL脚本,并封装成数据服务,交由联邦查询计算引擎调用。
利用法律AI大模型定向训练金融普法及金融解纷智能体 随着科技的飞速发展,人工智能在各个领域的应用不断拓展,智能体已经越来越深入应用于更为聚焦、具体的任务处理中。今天我们以金融治理中普法、解纷两个场景为例,探讨智能体在实践中的应用。全面加强监管、防范化解风险是目前金融工作的重点。
面向应用看AI,讯飞医疗焕新大模型 医疗大模型浪潮过去一年多来,大模型技术从最初的崭露头角到如今的遍地开花,市场竞争异常激烈。众多企业竞相布局,以强大的研发实力和资源储备为基石,力图在这片蓝海中占据一席之地。作为医疗人工智能领域的先行者,讯飞医疗在医疗大模型方面有着怎样的布局和实践呢?在第七届世界声博会暨2024科大讯飞全球1024开发者节上,刘庆峰表示,讯飞星火医疗大模型升级至2.0,在医疗海量知识问答、医疗复杂语言理解、医疗专业文书生成、医疗诊断治疗推荐、医疗多轮交互、医疗多模态交互等六大核心场景的能力上显著提升;
4种革新性AI Agent工作流设计模式全解析 AI Agent智能工作流在多个行业中展现出实际应用的巨大潜力,这些智能体在编程、研究和多模态任务处理等领域的应用,智能体工作流将在未来几年内极大扩展AI的能力边界。无疑,这四种设计模式的结合使用,不仅能够提升AI Agent在单个任务中的执行能力,还为它在更广泛的应用场景中进行协作和创新提供了可能。随着这些模式的进一步发展和完善,AI Agent将在未来的工作流程中发挥更加关键的作用,推动各行各业向智能化转型。
一文详解大模型推理:从基础知识到 vLLM 希望第一个Token的时间(TTFT)非常短。如今,用户期望任何应用程序的响应时间理想情况下都要快于1秒。因此,用户等待开始接收第一个token的时间越短越好。这对于期望互动的聊天机器人尤为重要。TTFT的长度受许多因素影响,关键因素是预填充阶段的计算(提示的预处理)以及请求在用户请求接收后是否立即处理或是否需要在队列中等待。重要的是要注意,在没有负载的服务器上,TTFT可能与在负载很重的服务器上非常不同。
80w起!零成本快速入门大模型指南 今年招聘市场确实是好点了,我发现群友都在讨论,得赶快学点 AI 大模型。他们有的是想正式转到一些新兴的 AI 行业,需要系统的学习训练。更多的是想跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。这也可以理解,ChatGPT 推出仅一年半的时间,就将生成式 AI 推向主流。从谷歌到亚马逊,从百度到阿里,几乎所有科技巨头都在布局 AI,也直接影响到了招聘市场,大模型相关的岗位数量多了不少,年薪甚至达到 80W-90W。