OpenAI发布了其根据自身技术研发与产品开发的通往AGI的五级量表。OpenAI 将 AI 开发分为五个阶段,每个阶段代表更高级的能力水平:
目前OpenAI向多Agent系统迈进与第三阶段的目标一致,其中 AI Agent应代表用户执行操作,从而提高他们的能力和效率。
按照现在AI的发展速度,GUI-Agent将能够快速接管一定的企业流程自动化,加上RAG技术的快速迭代翻新,5年之后差不多能够实现。
当然,还要看大语言模型的发展进程,毕竟LLM Based Agent的重点在于LLM。
AI Agent的5个级别
智能体的五个级别非常重要,它们不仅帮助我们理解人工智能的发展阶段和能力水平,还为人工智能的研究、开发和应用提供了一个清晰的框架。以下是智能体五个级别的简要概述及其重要性:
• L0级别(无AI):这个级别的智能体不具备人工智能,仅有具备感知能力的工具加上行动功能。它们仅依赖于基础规则和手动操作,无法展现智能化的行为。这个级别是智能体发展的起点,为后续级别的发展提供了基础。
• L1级别(基于规则的AI):这个级别的智能体采用基于规则的人工智能系统。它们能够根据预设的规则来执行任务,但缺乏自我学习和适应新情况的能力。这个级别标志着智能体开始具备一定的自动化能力,但仍然受限于预设规则。
• L2级别(基于模仿学习/强化学习的AI):这个级别的智能体使用模仿学习(IL)或强化学习(RL)的人工智能,取代基于规则的系统,并增强推理与决策功能。它们能够通过学习来改进行为,以更好地适应环境。这个级别显示了智能体开始具备学习和适应环境的能力。
• L3级别(基于大型语言模型的AI):这个级别的智能体采用大型语言模型(LLM)的人工智能,替代IL/RL系统,并增设记忆与反思模块。它们能够处理更复杂的任务,并且具有一定的记忆和自我反思能力。这个级别意味着智能体开始具备更高级的认知功能,如记忆和反思。
• L4级别(自主学习和泛化):在L3级别的基础上,L4级别的智能体提升了自主学习和泛化能力,能够更广泛地应用学到的知识,并在不同情境下进行泛化。这个级别标志着智能体开始接近于人类的认知能力,能够跨领域应用知识。
这些级别不仅对于技术发展至关重要,也对于理解智能体在商业、社会和伦理层面的影响具有重要意义。它们帮助我们设定合理的期望,规划技术发展的方向,并为智能体的未来发展提供了一个参考框架。随着技术的进步,这些级别也可能会继续演变,以适应人工智能的新突破和见解。目前市面上以及大家在用的AI Agent主要为第三级,且正在向第四级发展。
-
AI Agent应用程序利用一个或多个语言模型作为其核心基础或主干,动态生成响应和操作。
-
这些应用程序管理状态和转换,同时实时构建事件链以解决特定的用户查询,从而提供自适应解决方案。
-
AI Agent擅长处理模棱两可或隐含的问题,将它们分解为连续的子步骤,并通过行动、观察和反思的循环迭代处理,直到达到最终解决方案。
-
延迟和成本管理对于对话式实施至关重要,可以平衡响应能力与资源效率。Agentic 实现的延迟可能是个问题。
-
可检查性和可观察性对于生产实施至关重要,开发了强大的机制来揭示AI Agent所经过的状态和路径,从而确保透明度。
-
为了完成任务,AI Agent可以使用各种工具,每个工具都有明确的目的——无论是进行 API 调用、执行计算还是搜索 Web。
-
人机协同 (HITL) 可以用作辅助工具,使AI Agent能够在需要时寻求人工输入,从而扩展其操作能力。
-
可以无缝集成新的AI Agent工具以扩展功能,从而允许持续适应和增强自主AI Agent功能。
-
AI Agent拥有真正的自主权,独立做出决策和执行行动,需要最少的人工监督。自主性级别由 AI Agent 可以循环的迭代次数设置,以得出结论;以及可供使用的工具数量。
-
凭借先进的灵活性,AI Agent可以根据情境需求动态选择和排序工具,采用推理和自适应策略来解决出现的复杂任务。
智能体自动化的五个级别
智能体自动化的五个级别如下:
• 0级:固定自动化
• 这一级别不代表真正的智能体行为,相当于传统的机器人流程自动化(RPA),具有一组固定的规则和完全确定的结果。没有计划或执行控制,因为一切都是在编程过程中预先确定的。人工交互仅限于处理异常,并且任务范围仅限于基于规则的逻辑。
• 第1级:AI增强自动化
• 这一级别在个人决策层面引入基本的智能体行为。它本质上是固定的自动化,其中一些步骤由大型语言模型(LLM)增强。虽然与传统自动化相比,它提供的好处有限,但它代表了通过约束决策迈向更高级智能体的第一步。
• 第2级:智能体助理
• 这一级别涉及到能够使用工具调用的特定任务智能体自动化助理。这些系统可以解释用户意图,确定所需的结果,并采取适当的行动,例如总结文本、生成内容或使用特定工具。但是,它们仅限于静态的短期计划。
• 第3级:计划和反思
• 这一级别涉及到智能体能够根据用户指定的任务,使用各种资源和工具自主规划执行步骤,并根据中间反馈迭代计划直到完成。
• 第4级:记忆和上下文
• 智能体感知用户上下文,理解用户记忆,有时主动提供个性化服务。
• 第5级:数字角色
• 智能体代表用户完成事务,代表用户与他人进行交互,保证安全可靠。
以上级别展示了智能体自动化从简单的规则驱动到复杂的、能够自我学习和协作的智能体的发展过程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。