51 篇文章 10 订阅
37 篇文章 12 订阅

赛题介绍

• 科学家分析，神秘信息是经由量子电路加密过的一张图片，我们使用给定的 2 量子比特电路和 3 量子比特电路便可能进行解密。
• 为了不让 C 星坐以待毙，我们要将量子电路分解成 C 星可以实现的基础量子门，从而能帮助 C 星完成解密，完成史诗级的救援任务。

问题描述

U : = 1 2 [ 1 − 1 1 1 ] U:=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix}

R 0 θ \theta

评分机制

F ( U , R y ( θ ) ) = ∣ T r ⁡ ( U × R y T ( θ ) ) ∣ / 2 F(U,Ry(θ))=∣Tr⁡(U×RyT(θ))∣/2

R 0 3.1416

F ( U , R y ( 3.1416 ) ) = 1 2 ∣ Tr ⁡ ( 1 2 [ 1 − 1 1 1 ] × [ cos ⁡ ( 3.1416 2 ) − sin ⁡ ( 3.1416 2 ) sin ⁡ ( 3.1416 2 ) cos ⁡ ( 3.1416 2 ) ] T ) ∣ = 1 2 ∣ Tr ⁡ ( 1 2 [ 1 − 1 1 1 ] × [ cos ⁡ ( 3.1416 2 ) sin ⁡ ( 3.1416 2 ) − sin ⁡ ( 3.1416 2 ) cos ⁡ ( 3.1416 2 ) ] ) ∣ ≈ 0.7071 \begin{aligned} F\left(U, R_{y}(3.1416)\right) &=\frac{1}{2}\left|\operatorname{Tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \times\left[\begin{array}{cc} \cos \left(\frac{3.1416}{2}\right) & -\sin \left(\frac{3.1416}{2}\right) \\ \sin \left(\frac{3.1416}{2}\right) & \cos \left(\frac{3.1416}{2}\right) \end{array}\right]^{T}\right)\right| \\ &=\frac{1}{2}\left|\operatorname{Tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \times\left[\begin{array}{cc} \cos \left(\frac{3.1416}{2}\right) & \sin \left(\frac{3.1416}{2}\right) \\ -\sin \left(\frac{3.1416}{2}\right) & \cos \left(\frac{3.1416}{2}\right) \end{array}\right]\right)\right| \\ & \approx 0.7071 \end{aligned}

解题思路

∣ T r ⁡ ( U × R y T ( θ ) ) ∣ / 2 = 1 ∣Tr⁡(U×RyT(θ))∣/2 = 1

∣ T r ⁡ ( U × R y T ( θ ) ) ∣ = 2 ∣Tr⁡(U×RyT(θ))∣ = 2

U = 1 2 [ 1 − 1 1 1 ] U=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix}

R y ( θ ) = [ cos ⁡ θ 2 − sin ⁡ θ 2 sin ⁡ θ 2 cos ⁡ θ 2 ] R_{y}(\theta)=\left[\begin{array}{ll} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]

R y T ( θ ) = [ cos ⁡ θ 2 − sin ⁡ θ 2 sin ⁡ θ 2 cos ⁡ θ 2 ] T = [ cos ⁡ θ 2 sin ⁡ θ 2 − sin ⁡ θ 2 cos ⁡ θ 2 ] R_{y}^{T}(\theta)=\left[\begin{array}{ll} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]^{T} =\left[\begin{array}{ll} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]

U × R y T ( θ ) = 1 2 [ 1 − 1 1 1 ] × [ cos ⁡ θ 2 sin ⁡ θ 2 − sin ⁡ θ 2 cos ⁡ θ 2 ] U×RyT(θ)=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix} × \left[\begin{array}{ll} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]

U × R y T ( θ ) = 2 × ( cos ⁡ θ 2 + sin ⁡ θ 2 ) U×RyT(θ)={\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2})

∣ T r ⁡ ( U × R y T ( θ ) ) ∣ = 2 × ( cos ⁡ θ 2 + sin ⁡ θ 2 ) = 2 ∣Tr⁡(U×RyT(θ))∣ ={\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = 2

2 × ( cos ⁡ θ 2 + sin ⁡ θ 2 ) = 2 {\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = 2

( cos ⁡ θ 2 + sin ⁡ θ 2 ) = 2 (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = {\sqrt{2}}

1 + 2 sin ⁡ θ 2 cos ⁡ θ 2 = 2 1 + 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2

sin ⁡ θ 2 cos ⁡ θ 2 = 0.5 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 0.5

θ = Π 2 = 3.14 2 = 1.57 \theta = \frac{Π}{2} = \frac{3.14}{2} = 1.57

• 1
点赞
• 1
收藏
• 打赏
• 0
评论
08-29 6837
12-26 775
06-17 3217
07-29 735
05-06 1599
10-11 1314
11-29 3903
04-02 247
01-26 1660
05-18 197
05-18 2511
07-02 1141
05-06 2798
10-20 5414

“相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

Mr.郑先生_

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。