赛题介绍
本赛题由 “2020百度之星·程序设计大赛” 的决赛赛题改编而来,以期为更多开发者提供量子计算领域的学习交流机会。百度自 2017 年起发起了面向全球 AI 技术爱好者的深度学习算法竞赛——百度之星·开发者大赛,大赛的宗旨是为有创新力、专业性强、富有极客精神和团队合作精神的顶级开发者团队提供交流切磋、施展才能的舞台,并为参赛选手提供真实的数据集、深度学习平台飞桨(PaddlePaddle)、完整技术解决方案和一站式 AI 开发平台 AI Studio,降低广大开发者的 AI 学习门槛。2021 年的百度之星·开发者大赛,期待你的加入!
高度发达的 A 星在一次异变中文明即将消失,A 星人将重要信息加密后发送到下一个面临同样异变的欠发达的 C 星,希望能帮助 C 星上的文明躲过这次浩劫。A 星文明高度发达,已经实现了量子计算,故而采用了量子电路来加密信息。C 星接收后深感无力,因为他们的文明只能实现小型的基础量子门,不足以解密该重要信息。此时他们想起了友好星球 B 星上的我们,或许能为他们带来一线生机。而在座的我们能否帮助 C 星文明解决这次危机?
- 科学家分析,神秘信息是经由量子电路加密过的一张图片,我们使用给定的 2 量子比特电路和 3 量子比特电路便可能进行解密。
- 为了不让 C 星坐以待毙,我们要将量子电路分解成 C 星可以实现的基础量子门,从而能帮助 C 星完成解密,完成史诗级的救援任务。
问题描述
寻找合适的参数
θ
\theta
θ,使用
R
y
(
θ
)
R_y(\theta)
Ry(θ)旋转门来近似单量子比特门 U
U
:
=
1
2
[
1
−
1
1
1
]
U:=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix}
U:=21[11−11]
输入数据
无
输出数据
Question_1_Answer.txt 文件。该文件描述答案的量子电路结构,数据格式需满足 “提交内容说明” 要求,即文件内容格式必须为
R 0 θ \theta θ
其中 θ \theta θ 是选手给出的 float 类型实数。
评分机制
算分程序根据选手提交的量子电路结构数据解析出
θ
\theta
θ 值,计算量子门保真度函数F
F
(
U
,
R
y
(
θ
)
)
=
∣
T
r
(
U
×
R
y
T
(
θ
)
)
∣
/
2
F(U,Ry(θ))=∣Tr(U×RyT(θ))∣/2
F(U,Ry(θ))=∣Tr(U×RyT(θ))∣/2
然后将 F F F 作为最终分数(精确到小数点后四位)。
举例说明: 选手提交的 Question_1_Answer.txt 文件内容为
R 0 3.1416
算分程序解析出 θ = 3.1416 θ=3.1416 θ=3.1416,因为
F ( U , R y ( 3.1416 ) ) = 1 2 ∣ Tr ( 1 2 [ 1 − 1 1 1 ] × [ cos ( 3.1416 2 ) − sin ( 3.1416 2 ) sin ( 3.1416 2 ) cos ( 3.1416 2 ) ] T ) ∣ = 1 2 ∣ Tr ( 1 2 [ 1 − 1 1 1 ] × [ cos ( 3.1416 2 ) sin ( 3.1416 2 ) − sin ( 3.1416 2 ) cos ( 3.1416 2 ) ] ) ∣ ≈ 0.7071 \begin{aligned} F\left(U, R_{y}(3.1416)\right) &=\frac{1}{2}\left|\operatorname{Tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \times\left[\begin{array}{cc} \cos \left(\frac{3.1416}{2}\right) & -\sin \left(\frac{3.1416}{2}\right) \\ \sin \left(\frac{3.1416}{2}\right) & \cos \left(\frac{3.1416}{2}\right) \end{array}\right]^{T}\right)\right| \\ &=\frac{1}{2}\left|\operatorname{Tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \times\left[\begin{array}{cc} \cos \left(\frac{3.1416}{2}\right) & \sin \left(\frac{3.1416}{2}\right) \\ -\sin \left(\frac{3.1416}{2}\right) & \cos \left(\frac{3.1416}{2}\right) \end{array}\right]\right)\right| \\ & \approx 0.7071 \end{aligned} F(U,Ry(3.1416))=21∣∣∣∣∣Tr(21[11−11]×[cos(23.1416)sin(23.1416)−sin(23.1416)cos(23.1416)]T)∣∣∣∣∣=21∣∣∣∣Tr(21[11−11]×[cos(23.1416)−sin(23.1416)sin(23.1416)cos(23.1416)])∣∣∣∣≈0.7071
所以他的分数为 0.7071。
解题思路
这题只有1分,属于这个比赛的Hello World吧,其实就是数学计算。
我们看评分机制,要求计算量子门保真度函数F,F算得多少就是多少分,这题满分1分,所以其实就是求 F ( U , R y ( θ ) ) = 1 F(U,Ry(θ))=1 F(U,Ry(θ))=1时, θ θ θ的取值。
根据量子门保真度函数F,我们可以知道
∣
T
r
(
U
×
R
y
T
(
θ
)
)
∣
/
2
=
1
∣Tr(U×RyT(θ))∣/2 = 1
∣Tr(U×RyT(θ))∣/2=1
把2乘到等式的右边:
∣
T
r
(
U
×
R
y
T
(
θ
)
)
∣
=
2
∣Tr(U×RyT(θ))∣ = 2
∣Tr(U×RyT(θ))∣=2
接下来先计算Tr() 里的结果,简单提一下,Tr(A) 表示矩阵 A 的迹 (Trace),运算规则为取 n×n 矩阵 A 的主对角线所有元素之和。
题目已经给了:
U
=
1
2
[
1
−
1
1
1
]
U=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix}
U=21[11−11]
R y ( θ ) = [ cos θ 2 − sin θ 2 sin θ 2 cos θ 2 ] R_{y}(\theta)=\left[\begin{array}{ll} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right] Ry(θ)=[cos2θsin2θ−sin2θcos2θ]
因此:
R
y
T
(
θ
)
=
[
cos
θ
2
−
sin
θ
2
sin
θ
2
cos
θ
2
]
T
=
[
cos
θ
2
sin
θ
2
−
sin
θ
2
cos
θ
2
]
R_{y}^{T}(\theta)=\left[\begin{array}{ll} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]^{T} =\left[\begin{array}{ll} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]
RyT(θ)=[cos2θsin2θ−sin2θcos2θ]T=[cos2θ−sin2θsin2θcos2θ]
带入下面这个式子:
U
×
R
y
T
(
θ
)
=
1
2
[
1
−
1
1
1
]
×
[
cos
θ
2
sin
θ
2
−
sin
θ
2
cos
θ
2
]
U×RyT(θ)=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix} × \left[\begin{array}{ll} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]
U×RyT(θ)=21[11−11]×[cos2θ−sin2θsin2θcos2θ]
化简一下:
U
×
R
y
T
(
θ
)
=
2
×
(
cos
θ
2
+
sin
θ
2
)
U×RyT(θ)={\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2})
U×RyT(θ)=2×(cos2θ+sin2θ)
该矩阵的迹是其本身,因此有:
∣
T
r
(
U
×
R
y
T
(
θ
)
)
∣
=
2
×
(
cos
θ
2
+
sin
θ
2
)
=
2
∣Tr(U×RyT(θ))∣ ={\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = 2
∣Tr(U×RyT(θ))∣=2×(cos2θ+sin2θ)=2
解下述方程即可:
2
×
(
cos
θ
2
+
sin
θ
2
)
=
2
{\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = 2
2×(cos2θ+sin2θ)=2
( cos θ 2 + sin θ 2 ) = 2 (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = {\sqrt{2}} (cos2θ+sin2θ)=2
两边平方:
1
+
2
sin
θ
2
cos
θ
2
=
2
1 + 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2
1+2sin2θcos2θ=2
化简一下:
sin
θ
2
cos
θ
2
=
0.5
\sin \frac{\theta}{2} \cos \frac{\theta}{2} = 0.5
sin2θcos2θ=0.5
不难算出:
θ
=
Π
2
=
3.14
2
=
1.57
\theta = \frac{Π}{2} = \frac{3.14}{2} = 1.57
θ=2Π=23.14=1.57
所以这一题的答案是1.57,即参数 θ \theta θ=1.57时,能使 R y ( θ ) R_y(\theta) Ry(θ)旋转门来近似单量子比特门 U