AI Studio常规赛:量子电路合成之单量子比特门近似(参考题解)

赛题介绍

本赛题由 “2020百度之星·程序设计大赛” 的决赛赛题改编而来,以期为更多开发者提供量子计算领域的学习交流机会。百度自 2017 年起发起了面向全球 AI 技术爱好者的深度学习算法竞赛——百度之星·开发者大赛,大赛的宗旨是为有创新力、专业性强、富有极客精神和团队合作精神的顶级开发者团队提供交流切磋、施展才能的舞台,并为参赛选手提供真实的数据集、深度学习平台飞桨(PaddlePaddle)、完整技术解决方案和一站式 AI 开发平台 AI Studio,降低广大开发者的 AI 学习门槛。2021 年的百度之星·开发者大赛,期待你的加入!

高度发达的 A 星在一次异变中文明即将消失,A 星人将重要信息加密后发送到下一个面临同样异变的欠发达的 C 星,希望能帮助 C 星上的文明躲过这次浩劫。A 星文明高度发达,已经实现了量子计算,故而采用了量子电路来加密信息。C 星接收后深感无力,因为他们的文明只能实现小型的基础量子门,不足以解密该重要信息。此时他们想起了友好星球 B 星上的我们,或许能为他们带来一线生机。而在座的我们能否帮助 C 星文明解决这次危机?

  • 科学家分析,神秘信息是经由量子电路加密过的一张图片,我们使用给定的 2 量子比特电路和 3 量子比特电路便可能进行解密。
  • 为了不让 C 星坐以待毙,我们要将量子电路分解成 C 星可以实现的基础量子门,从而能帮助 C 星完成解密,完成史诗级的救援任务。

问题描述

寻找合适的参数 θ \theta θ,使用 R y ( θ ) R_y(\theta) Ry(θ)旋转门来近似单量子比特门 U
U : = 1 2 [ 1 − 1 1 1 ] U:=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix} U:=2 1[1111]

在这里插入图片描述

输入数据

输出数据

Question_1_Answer.txt 文件。该文件描述答案的量子电路结构,数据格式需满足 “提交内容说明” 要求,即文件内容格式必须为

R 0 θ \theta θ

其中 θ \theta θ 是选手给出的 float 类型实数。

评分机制

算分程序根据选手提交的量子电路结构数据解析出 θ \theta θ 值,计算量子门保真度函数F
F ( U , R y ( θ ) ) = ∣ T r ⁡ ( U × R y T ( θ ) ) ∣ / 2 F(U,Ry(θ))=∣Tr⁡(U×RyT(θ))∣/2 F(U,Ry(θ))=Tr(U×RyT(θ))/2

然后将 F F F 作为最终分数(精确到小数点后四位)。

举例说明: 选手提交的 Question_1_Answer.txt 文件内容为

R 0 3.1416

算分程序解析出 θ = 3.1416 θ=3.1416 θ=3.1416,因为

F ( U , R y ( 3.1416 ) ) = 1 2 ∣ Tr ⁡ ( 1 2 [ 1 − 1 1 1 ] × [ cos ⁡ ( 3.1416 2 ) − sin ⁡ ( 3.1416 2 ) sin ⁡ ( 3.1416 2 ) cos ⁡ ( 3.1416 2 ) ] T ) ∣ = 1 2 ∣ Tr ⁡ ( 1 2 [ 1 − 1 1 1 ] × [ cos ⁡ ( 3.1416 2 ) sin ⁡ ( 3.1416 2 ) − sin ⁡ ( 3.1416 2 ) cos ⁡ ( 3.1416 2 ) ] ) ∣ ≈ 0.7071 \begin{aligned} F\left(U, R_{y}(3.1416)\right) &=\frac{1}{2}\left|\operatorname{Tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \times\left[\begin{array}{cc} \cos \left(\frac{3.1416}{2}\right) & -\sin \left(\frac{3.1416}{2}\right) \\ \sin \left(\frac{3.1416}{2}\right) & \cos \left(\frac{3.1416}{2}\right) \end{array}\right]^{T}\right)\right| \\ &=\frac{1}{2}\left|\operatorname{Tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \times\left[\begin{array}{cc} \cos \left(\frac{3.1416}{2}\right) & \sin \left(\frac{3.1416}{2}\right) \\ -\sin \left(\frac{3.1416}{2}\right) & \cos \left(\frac{3.1416}{2}\right) \end{array}\right]\right)\right| \\ & \approx 0.7071 \end{aligned} F(U,Ry(3.1416))=21Tr(2 1[1111]×[cos(23.1416)sin(23.1416)sin(23.1416)cos(23.1416)]T)=21Tr(2 1[1111]×[cos(23.1416)sin(23.1416)sin(23.1416)cos(23.1416)])0.7071

所以他的分数为 0.7071。

解题思路

这题只有1分,属于这个比赛的Hello World吧,其实就是数学计算。

我们看评分机制,要求计算量子门保真度函数F,F算得多少就是多少分,这题满分1分,所以其实就是求 F ( U , R y ( θ ) ) = 1 F(U,Ry(θ))=1 F(U,Ry(θ))=1时, θ θ θ的取值。

根据量子门保真度函数F,我们可以知道
∣ T r ⁡ ( U × R y T ( θ ) ) ∣ / 2 = 1 ∣Tr⁡(U×RyT(θ))∣/2 = 1 Tr(U×RyT(θ))/2=1

把2乘到等式的右边:
∣ T r ⁡ ( U × R y T ( θ ) ) ∣ = 2 ∣Tr⁡(U×RyT(θ))∣ = 2 Tr(U×RyT(θ))=2

接下来先计算Tr() 里的结果,简单提一下,Tr(A) 表示矩阵 A 的迹 (Trace),运算规则为取 n×n 矩阵 A 的主对角线所有元素之和。

题目已经给了:
U = 1 2 [ 1 − 1 1 1 ] U=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix} U=2 1[1111]

R y ( θ ) = [ cos ⁡ θ 2 − sin ⁡ θ 2 sin ⁡ θ 2 cos ⁡ θ 2 ] R_{y}(\theta)=\left[\begin{array}{ll} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right] Ry(θ)=[cos2θsin2θsin2θcos2θ]

因此:
R y T ( θ ) = [ cos ⁡ θ 2 − sin ⁡ θ 2 sin ⁡ θ 2 cos ⁡ θ 2 ] T = [ cos ⁡ θ 2 sin ⁡ θ 2 − sin ⁡ θ 2 cos ⁡ θ 2 ] R_{y}^{T}(\theta)=\left[\begin{array}{ll} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right]^{T} =\left[\begin{array}{ll} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right] RyT(θ)=[cos2θsin2θsin2θcos2θ]T=[cos2θsin2θsin2θcos2θ]

带入下面这个式子:
U × R y T ( θ ) = 1 2 [ 1 − 1 1 1 ] × [ cos ⁡ θ 2 sin ⁡ θ 2 − sin ⁡ θ 2 cos ⁡ θ 2 ] U×RyT(θ)=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1\end{bmatrix} × \left[\begin{array}{ll} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{array}\right] U×RyT(θ)=2 1[1111]×[cos2θsin2θsin2θcos2θ]

化简一下:
U × R y T ( θ ) = 2 × ( cos ⁡ θ 2 + sin ⁡ θ 2 ) U×RyT(θ)={\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) U×RyT(θ)=2 ×(cos2θ+sin2θ)

该矩阵的迹是其本身,因此有:
∣ T r ⁡ ( U × R y T ( θ ) ) ∣ = 2 × ( cos ⁡ θ 2 + sin ⁡ θ 2 ) = 2 ∣Tr⁡(U×RyT(θ))∣ ={\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = 2 Tr(U×RyT(θ))=2 ×(cos2θ+sin2θ)=2

解下述方程即可:
2 × ( cos ⁡ θ 2 + sin ⁡ θ 2 ) = 2 {\sqrt{2}} × (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = 2 2 ×(cos2θ+sin2θ)=2

( cos ⁡ θ 2 + sin ⁡ θ 2 ) = 2 (\cos \frac{\theta}{2} + \sin \frac{\theta}{2}) = {\sqrt{2}} (cos2θ+sin2θ)=2

两边平方:
1 + 2 sin ⁡ θ 2 cos ⁡ θ 2 = 2 1 + 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 1+2sin2θcos2θ=2

化简一下:
sin ⁡ θ 2 cos ⁡ θ 2 = 0.5 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 0.5 sin2θcos2θ=0.5

不难算出:
θ = Π 2 = 3.14 2 = 1.57 \theta = \frac{Π}{2} = \frac{3.14}{2} = 1.57 θ=2Π=23.14=1.57

所以这一题的答案是1.57,即参数 θ \theta θ=1.57时,能使 R y ( θ ) R_y(\theta) Ry(θ)旋转门来近似单量子比特门 U

  • 1
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:博客之星2020 设计师:CSDN官方博客 返回首页
评论

打赏作者

Mr.郑先生_

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值