排序:
默认
按更新时间
按访问量

python 工具神器: pandas

   最近实习需要处理大量数据,数据预处理过程伴随着大量逻辑功能实现,自己写的代码往往时间代价很大,时间不等人啊,必须得快速解决数据预处理,不然老大怼着问进度,自己也着急。于是网上各种查实现某种数据预处理功能快速的方法,找来找去,最后不得不感叹。pandas真的是个神器。 pandas基础内容很...

2018-08-15 15:31:26

阅读数:46

评论数:0

python中常用的文件读写方法(txt文本文件,excel文件,CVS文件,mat文件)

一、txt类文本文件的读写         使用python处理数据文件较多,而且大部分数据文件保存在文本文件中(例如:‘  .txt   ’,  '  .json  '   文件)          读取文本文件的主要步骤分为:a)打开目标文件;  b)获取文件内数据;  c)关闭文件  ...

2018-08-14 15:01:54

阅读数:68

评论数:0

朴素贝叶斯(naive Bayes)原理

朴素贝叶斯方法是基于贝叶斯定理与特征条件独立假设的分类方法。   贝叶斯定理:条件概率推理,利用条件概率来对一些事情进行推断。   特征条件独立假设:用于分类的特征在类确定的情况下都是条件独立的。   1. 贝叶斯分类基本原理:     对于给定集合{X,Y},首先求取类别Y的分布概率,...

2018-04-25 21:45:54

阅读数:27

评论数:0

感知机原始形式、对偶形式

感知机的原始形式对于输入样本特征数据,感知机通过以下函数将其映射至{+1,-1}的输出空间 f(x)=sign(w⋅x+b)f(x)=sign(w⋅x+b)(1) 对于所有的错分类点i∈Mi∈M,都有−yi(w⋅xi+b)>0−yi(w⋅xi+b)>0,...

2018-04-19 11:09:53

阅读数:98

评论数:1

机器学习之感知机与梯度下降法认知

感知机原理:        感知机是一种线性二分类模型,其目的是找到能将训练数据线性可分的分离超平面。对于数据集T                                                 来说,存在可将数据集线线性划分的超平面S:                      ...

2018-04-18 09:14:12

阅读数:45

评论数:0

机器学习中的生成模型与判别模型

机器学习中,监督学习模型主要有两种方式: 生成学习与判别学习。生成模型原理:根据学习联合概率分布P(X,Y),求出条件概率分布 P(Y|X)做为预测模型。          每一类单独学习模型,再用新的样本预测,在哪一类上预测概率最大,输出结果即为哪一类。经典模型:朴素贝叶斯(Naive Baye...

2018-04-17 20:56:18

阅读数:28

评论数:0

机器学习中的损失函数与正则化

        正则化是结构风险最小化的实现策略,形式是在经验风险最小化的后面加上正则项。(正则项一般是模型复杂度的单调递增函数,模型越复杂,正则项的值越大)。                                                 损失函数一般有一下几种:1.  0-1损...

2018-04-17 16:03:13

阅读数:45

评论数:0

基于python keras 卷积神经网络的报文识别代码

项目要求:利用卷积神经网络来对电报报文进行识别,因为报文数据集较小,需要用到MNIST数据集来作为训练集。实现步骤:1. 数据预处理:将报文图片处理成单个数字2. 网络训练3. 网络参数微调4. 分类预测一. 数据集 如下所示,每个报文由四个数字组成                        ...

2018-04-16 18:33:55

阅读数:86

评论数:1

经验风险最小化与结构风险最小化

最近在看李航的统计学习方法,边看边做点笔记。本文,包括后续写作纯属个人浅见。    模型学习目标是选择期望风险最小的模型,但期望风险最小模型需要用到联合分布概率 P(X,Y)求取条件概率分布 P(Y|X),从而获取预测结果,计算损失。然而,联合概率分布未知,导致监督学习成为一个病态问题。    在...

2018-04-13 16:45:07

阅读数:35

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭