Input_shape中的{dim:10 dim:3 dim:224 dim:224}

y
  1. layer {  
  2.   
  3.   name: "data"  
  4.   type: "Input"  
  5.   top: "data"  
  6.   input_param { shape: { dim: 10 dim: 3 dim: 224 dim: 224 } }  
  7. }  
shape {
  dim: 10 #num,对待识别样本进行数据增广的数量,可自行定义。一般会进行5次crop,之后分别flip。如果该值为10则表示一个样本会变成10个,之后输入到网络进行识别。如果不进行数据增广,可以设置成1
  dim: 3  #通道数,表示RGB三个通道
  dim: 224   #图像的长和宽,通过 *_train_test.prototxt文件中数据输入层的crop_size获取
  dim: 224

详细解释:
dim:10  ——表示对待识别样本进行数据增广的数量,该值的大小可自行定义。但一般会进行5次crop,将整幅图像分为多个flip。该值为10则表示会将待识别的样本分为10部分输入到网络进行识别。如果相对整幅图像进行识别而不进行图像数据增广,则可将该值设置为1.

dim:3 ——该值表示处理的图像的通道数,若图像为RGB图像则通道数为3,设置该值为3;若图像为灰度图,通道数为1则设置该值为1.

dim:224 ——图像的长度,可以通过网络配置文件中的数据层中的crop_size来获取。

dim:224——图像的宽度,可以通过网络配置文件中的数据层中的crop_size来获取。
发布了107 篇原创文章 · 获赞 324 · 访问量 110万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览