| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 14378 | Accepted: 4165 |
Description
Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 ≤ K ≤ 30). For example, cows exhibiting feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on.
FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i.
Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.
Input
Lines 2..N+1: Line i+1 contains a single K-bit integer specifying the features present in cow i. The least-significant bit of this integer is 1 if the cow exhibits feature #1, and the most-significant bit is 1 if the cow exhibits feature #K.
Output
Sample Input
7 3 7 6 7 2 1 4 2
Sample Output
4
Hint
以样例为例
7 3
7
6
7
2
1
4
2
先把7个十进制特征数转换为二进制,存放到特征数组Map[ ][ ],得到:
7 1 1 1
6 1 1 0
7 1 1 1
2 0 1 0
1 0 0 1
4 1 0 0
2 0 1 0
逐行累加得
1 1 1
2 2 1
3 3 2
3 4 2
3 4 3
4 4 3
4 5 3
所有列都减去第一列
0 0 0
0 0 -1
0 0 -1
0 1 -1
0 1 0
0 0 -1
0 1 -1
显然第2行与第6行相等,均为0 0 -1,且距离最远,距离为6-2=4,这就是所求。
用hash来存放
有一个坑是如果有某一行 全为零,那么从第一行到这一行的变化量也是0
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN = 100005;
const int MAXK = 35;
const int mod = 100007;
int Map[MAXN][MAXK];
int n ,k;
vector<int>qq[mod+5];
bool f(int p1, int p2)
{
for(int i = 1; i<=k; ++i)
{
if(Map[p1][i]!=Map[p2][i])
return false;
}
return true;
}
int main()
{
int x;
scanf("%d%d", &n,&k);
for(int i = 1;i<=n;++i)
{
scanf("%d",&x);
for(int j = 1; j<=k;++j)
{
Map[i][j] = x%2;
x/=2;
if(i>1)Map[i][j]+=Map[i-1][j];
if(j>1)Map[i][j]-=Map[i][1];
}
Map[i][1] = 0;
}
int l = mod+1, r = -1, t, MAX = 0, sum;
for(int i = 1; i<=n;++i)
{
t = sum = 0;
for(int j = 1; j<=k;++j)
{
sum = (sum+Map[i][j]+mod)%mod;
if(!Map[i][j])++t;
}
if(sum<0)sum*=-1;
if(t==k&&i>MAX)MAX = i;
qq[sum].push_back(i);
if(sum<l)l = sum;
if(sum>r)r = sum;
}
for(int i = l; i<=r; ++i)
{
for(int j = 0; j<(int)qq[i].size();++j)
{
for(int kk = j+1; kk<(int)qq[i].size();++kk)
{
int p1 = qq[i][j], p2=qq[i][kk];
if(f(p1,p2)&&MAX<(int)fabs(p2-p1))
MAX=(int)fabs(p2-p1);
}
}
}
printf("%d\n",MAX);
return 0;
}
本文介绍了一种算法,用于解决在给定一系列具有特定特征的牛群中找到最大平衡子集的问题。该问题旨在寻找一个连续的子区间,在这个子区间内每种特征出现的次数相等。
778

被折叠的 条评论
为什么被折叠?



