【每日一题】新21点——概率题目

本文探讨了一道结合概率和动态规划的21点问题,重点介绍了从后往前推导的解题思路。通过设置成功事件概率,并利用转移方程简化计算,避免超时。文章揭示了如何利用滑动窗口优化动态规划算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2020/06/03 一道穿了概率外衣的dp问题
在这里插入图片描述

思路核心在于如何理解题意,这个概率是如何计算得到的。
有两种思路,第一种思路从前往后进行推导,但是我没成功。暂且不表。
主要讲一下比较好的第二种思路。既然是一道概率题,我们首先把游戏结束时的成功的事件设置为1。成功事件是指,最后结果大于等于K且小于等于N的事件,与之相应的失败时间是最后结果大于N。

由于最后的状态只与前一个状态有关,因此我们设置状态dp[i]表示当前数值为i时,成功的概率。
显然dp[K: min(N,K+W)+1] = 1,其余状态都初始化为0。

转移方程:dp[i] = sum(dp[i+1:i+W+1])/W。也就是对未来的w个状态的概率加和并平均。这样我们需要最后得到dp[0]即可。

class Solution:
    def new21Game(self, N: int, K: int, W: int) -> float:
        # 时间复杂度O(kw+min(N-K,W))
        if K 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值