Compact Bilinear Pooling
Yang Gao1, Oscar Beijbom1, Ning Zhang2∗, Trevor Darrell1 † 1EECS, UC Berkeley 2Snapchat Inc. {yg, obeijbom, trevor}@eecs.berkeley.edu {ning.zhang}@snapchat.com
arXiv:1511.06062v2 [cs.CV] 12 Apr 2016
摘要:
双线性模型在一系列视觉任务表现很好,如语义分割,细粒度识别,面部识别..
然而,双线性特征是高维的,一般高达几十万到数百万,这样使得接下来的分析不可行。
本文提出两种紧凑的双线性表征,具有和完全的双向性表征一样的区分能力但是仅仅只有几千维度
这种紧凑的表征可以使用分类错误样本的反向传播,从而可以达到图像识别系统的端到端的优化。
该紧凑的双线性表征来自于一种新的双线性池核化分析方法,它洞悉了双线性池的区分能力。
因为方向改变,不再更新....(伪原创)