本文无特殊说明,字母代表的都为整数
定义:
b整除a,即存在整数c,使得a=b*c,记作b|a。
性质
1.若b|c且c|a,则b|a
证明
c=b*k1,a=c*k2
a=(b*k1)*k2
2.若a|b且a|c,则a|(b±c)
证明
b=a*k1,c=a*k2
b±c=a*(k1±k2)
3.若a|b且a|c,则a|(bx+cy).
证明
b=a*k1,c=a*k2
bx+cy=a(k1*x + k2*y)
4.若b|a,则有a=0 或 |a| ≥ |b|
证明
a=b*k1
1.k1=0
a=0
2.k1>=1
a>=b
5.x^n−y^n=(x−y)(x^(n−1)+x^(n−2) y+…+xy^(n−2)+y^(n−1))
证明
乘起来
6.x^n+y^n=(x+y)(x^(n−1)−x^(n−2) y+…−xy^(n−2)+y^(n−1))
证明
乘起来
带余除法
a/b=c……d,则a=bc+d且c,d唯一(0<=d