RMQ算法讲解

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/qq_41311604/article/details/79900893
            </div>
                                                <!--一个博主专栏付费入口-->
         
         <!--一个博主专栏付费入口结束-->
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-4a3473df85.css">
                                    <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-4a3473df85.css">
            <div class="htmledit_views" id="content_views">
                                        <p>现在给你一个问题:给你一个数组 ,其中有N个数字,现在给你一次询问,给你区间[l ,r],问你在这个区间内的最大值为多少?</p>

哇!这题简单啊,一个for循环,遍历数组记录最大值输出即可啊。

 

那好,现在我告诉你假设N为50000,给你Q次询问((1 ≤ Q ≤ 200,000)),如果这种情况,我们还每次都进行暴力遍历求解的话,那么无论你提交几万次都会得到如下结果:

 

是的,这种暴力遍历求解虽然思维简单,代码简短,但是很慢啊。

 

那该怎么做呢?以前我也不会啊,自从学了RMQ,诶,真好用,我们全家都用它!

 

RMQ(Range Minimum/Maximum Query),即区间最值查询。RMQ算法一般用较长时间做预处理,时间复杂度为O(nlogn),然后可以在O(1)的时间内处理每次查询。

 

下面我们从一个实际问题来解释RMQ

我们假设数组arr为:1,2,6,8,4,3,7

我们设二维数组dp[i][j]表示从第i位开始连续 2^j 个数中的最小值。例如dp[2][1]就表示从第二位数开始连续两个数的最小值(也就是从第二位数到第三位数的最小值),即2,6中的最小值,所以dp[2][1] = 2;

 

其实我们求 dp[i][j] 的时候可以把它分成两部分,第一部分是从 ii+2^(^j^-^1^)-1 ,第二部分从i+2^(^j^-^1^)i+2^j-1 ,为什么可以这么分呢?其实我们都知道二进制数前一个数是后一个的两倍,那么可以把 ii+2^j-1 这个区间通过2^(^j^-^1^)分成相等的两部分, 那么转移方程很容易就写出来了。(dp[i][0]就表示第i个数字本身)

 

dp[i][j] = min(dp [i][j - 1], dp [i + (1 << j - 1)][j - 1])

由此给出下列代码:


 
 
  1. void rmq_init()
  2. {
  3. for( int i= 1;i<=N;i++)
  4. dp[i][ 0]=arr[i]; //初始化
  5. for( int j= 1;( 1<<j)<=N;j++)
  6. for( int i= 1;i+( 1<<j) -1<=N;i++)
  7. dp[i][j]=min(dp[i][j -1],dp[i+( 1<<j -1)][j -1]);
  8. }

这里需要注意一个循环变量的顺序,我们看到外层循环变量为j,内层循环变量为i,这是为什么呢?可以互换一下位置吗?

 

答案当然是不可以,我们要理解这个状态转移方程的意义,这个状态方程的含义是:先更新每两个元素中的最小值,然后通过每两个元素的最小值获得每4个元素中的最小值,依次类推更新所有长度的最小值。

 

而如果是i在外,j在内的话,我们更新的顺序就变成了从1开始的前1个元素,前2个元素,前4个元素,前8个元素。。。

当j等于3的时候dp[1][3] = min(min(ans[0],ans[1],ans[2],ans[3]),min(ans[4],ans[5],ans[6],ans[7])))的值,

但是我们根本没有计算min(ans[0],ans[1],ans[2],ans[3])和min(ans[4],ans[5],ans[6],ans[7]),所以这样的方法肯定是错误的。

为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。

 

接下来我们来讲解RMQ的查询部分,假设我们需要查询区间[l ,r]中的最小值,令k = log_2(r-l+1) , 则区间[l, r]的最小值RMQ[l,r] = min(dp[l][k], dp[r - (1 << k) + 1][k]);

 

但是为什么这样就可以保证是区间最小值了呢?

 

dp[l][k]维护的是区间 [l, l + 2^k - 1] , dp[r - (1 << k) + 1][k]维护的是区间 [r - 2^k + 1, r] 。

那么只要我们保证r-2^k+1  ≤ l+2^k-1就能保证RMQ[l,r] = min(dp[l][k], dp[r - (1 << k) + 1][k]);


 

接下来我们用分析法来证明这个不等式:

我们假设 r-2^k+1  ≤ l+2^k-1 这个等式成立

即有 r - l + 2 ≤ 2^(^k^+^1^) 也就是 r - l + 2 ≤ 2*2^k

又因为 k = log_2(r-l+1);

那么 r - l + 2 ≤ 2 * (r - l +1)

则 r - l + 2 ≤ 2*(r - l) + 2

即 r - l ≤ 2*(r-l)

所以 r - l ≥ 0,即假设成立

我们举个例子, l = 4,r = 6;

假设数组arr为:1,2,6,8,4,3,7

此时 k = log_2(r-l+1) = log_23 = 1

则区间[4,6]的最小值 = min(dp[4][1],dp[5][1])

dp[4][1] = 4,dp[5][1] = 3,所以区间[4,6]的最小值 = min(dp[4][1],dp[5][1]) = 3

我们很容易看出来答案是正确的。

由此给出查询部分代码:


 
 
  1. int rmq(int l,int r)
  2. {
  3. int k=log2(r-l+ 1);
  4. return min(dp[l][k],dp[r-( 1<<k)+ 1][k]);
  5. }

好了,至此RMQ全部介绍完毕。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值