一、前额叶不对称的使用:文献回顾
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
二、对额叶不对称进行最佳估计:数据采集、转换、删减等过程
1.数据采集注意事项
(1)EEG不对称的数据采集指南与其他EEG信号采集指南类似
(2)考虑到EEG不对称性既可以是一种特异性的个体差异,同时也会随着个体状态的变化而变化,因此在采集EEG不对称性信号时,要特别注意,避免在EEG记录之前或期间无意中诱发个体状态变化。(主试要做到专业、高效地完成被试准备,要注意被试的反应,确保被试情绪平静)
(3)一个被试参加多个研究项目时,注意前一个实验的情绪刺激的遗留效应对后一个实验的影响
(4)数据采集时间太长容易引起被试情绪波动,引入实验设计以外的数据。
(5)频谱分时过程中的epochs叠加平均能够减少不常见、不规则信号的影响,有研究认为至少需要100个epochs才能保证获得非常可靠的前额叶EEG不对称指数。
(6)有研究发现,数据预处理去除眨眼等噪声过程中,可能会去掉约50%的数据,因此数据采集长度建议为预期实验设计时长的2-3倍。
2.转换或不转换参考电极的影响
(1)要合理的解释额叶EEG不对称数据,必须保证特定位置的单个电极采集的数据反应的是该区域大脑的电变化,而不是因为参考电极或者其他因素导致的电变化。因此,需要找一个相对变化较少的参考电极,例如双耳(垂)平均、全脑平均等。
(2)全脑电极阵列非常多的时候推荐使用全脑平均参考,而电极阵列不够多的时候全脑平均容易造成误差。Cz参考电极会低估或高估其他电极的数值,不适用EEG不对称分析。
(3)平均乳突和全脑平均参考会造成定位困难,导致来自遥远的颅内来源的功率在不具代表性的头皮电极上显而易见。最令人烦恼的是alpha“镜像”,即额部alpha功率被枕部阿尔法偶极子震荡的相反极性所污染。偶极子在一个位置产生正值,在180°的另外一面就会产生一个负值,而功率谱分析只考虑幅值变化,不考虑正负值,因此会导致偶极子两侧的功率都发生变化。一种替代方法是使用空间滤波器,例如无参考CSD变换(reference-free CSD transformation),该方法增加了局部电活动的贡献并衰减了来自远端容积传导源的电活动的贡献。
(4)研究表明,CSD变换可以更好地反映前额叶不对称的个体差异,并减少非前额叶源对前额叶不对称的贡献。静息态EEG数据,相对于睁眼状态,闭眼时枕区alpha功率明显增加。在全脑平均参考、Cz参考、双侧乳突平均参考等条件下,闭眼枕区增加的alpha功率会影响前额叶的alpha功率。而采用CSD转换的参考方法,能很好的将闭眼时枕区增加的alpha功率控制在枕区范围内,即CSD转换参考能够较大限度地减少局部电位变化对全局(尤其是对另外一侧)电位的影响,因此CSD转换参考相较于全脑平均、双侧乳突平均、Cz参考等,可能更适合于评估前额叶不对称,maybe是一种首选的方法。
(5)使用CSD转换参考需要注意:电极数量较少时CSD转换有可能失真;CSD转换参考对靠近电极帽边缘的电极也不友好;CSD转换参考对于“插值电极”效果更不好。
(6)根据该文章作者的经验,CSD可以很好地捕获60通道电极排布的EEG阿尔法不对称性。另外,作为替代方案,还可以使用其他空间滤波器,例如independent components or source estimation(例如LORETA)。文章作者提示:当有疑问时,比较和对比不同的电极排布如何影响研究结果,并可以考虑在出版物中呈现多个电极排布的结果。(关于CSD,以前有过一点接触,但是理解的不深,以后要另外找时间专门研究一下CSD,以及LORETA)
3.将原始信号转换为不对称指数
(1)原始数据,先要分成时长较短的epochs,通过傅里叶变换将每个epoch中的时域信号转换成频域信号,最后不同epochs中的频域信号叠加平均.
(2)傅里叶变换是从时域信号转换为频域信号的主要方法,将原始信号分为时长较短(1-2秒)的时间段更复合傅里叶变换的假设.为了降低epochs间的不连续性,傅里叶变换方法引入了spurious frequencies来重建epoch边缘的信号,这会导致降低了epoch边缘信号的功率.overlapping epochs解决了这个问题.第n个epoch末段数据在该epoch中的权重非常低,但是在第n+1个epoch中的权重将更大.
(3)要计算EEG不对称,单个电极上某频带的功率要进行自然对数转换,然后计算左右侧的功率差异(ln[right]-ln[left]).自然对数转换可以校正一部分因为个体颅骨厚度不同而导致的电压幅度差异.
(4)额叶不对称指数能够反应左右半球激活的相对差异,这差异可能来自一侧激活的增强或者另一侧激活的减弱,亦或者两者同时存在,因此额叶不对称无法显示单侧半球的绝对变化情况.(这里有一段讲个体差异的,没看懂.还讲了两种处理单个电极数据的方法,没看懂)
4.噪声删减方法
(1)额叶EEG不对称分析中主要的噪声来源有:眼瞟\眨眼\肌电\信号不连续,采集额叶电极减去EOG电极信号的方法去除眼动噪声,被认为存在影响神经信号的可能.(EOG中可能记录到了一点神经信号)
(2)肌电以及信号不连续会在一个比较广泛的频率范围内影响频谱功率,降低信噪比,因此包含这些噪声的epochs通常被rejected
5.对头皮原始数据进行溯源分解,以识别噪声成分
(1)另外一种去噪技术就是:盲源分离技术,独立成分分析(ICA)就是这样的一种技术,通过统计学准则识别并分解EEG信号变成多个独立的成分(ICs),每个IC都是一个时间序列,所有的ICs的总和就是原始EEG信号.每个成分的时间序列可以被概念化为一个源(不一定是颅内源),这些独立的成分(源信号)构成了头皮记录的EEG信号;因此,每个头皮EEG信号都是ICs的加权组合。
(2)在时间上同时出现的电压变化会被识别为成分,特别是时空关系非常固定(一成不变)时.数据中彼此线性独立的数据向量的数量决定了数据的范围,从而决定了ICs的数量.通常ICs的数量就是电极的数量,平均参考的时候电极数量减一.
(3)ICA是一种盲源分离:用户既不能指定ICs的数量,也不能指定IC axes 的方向.
(4)EEGlab提供了一种开源的infomax ICA方法,该方法经常用于EEG伪影校正和降维.
(5)ICA assumes: 1) delays in propagation between electrodes are negligible; 2) sources are stationary in terms of topography;3) the time courses of sources are independent; and 4) the number of sources is the same as the number of sensors.这些假定并不完全成立,因此有一下几个建议:1.对连续数据进行积极的zero-phase-shift finite impulse response(FIR)高通滤波(1–2Hz)可以改善平稳性和ICA分解。2.通过从整个epoch中减去平均值来消除数据中的缓慢漂移或直流偏移,可以改善分离。不鼓励研究人员在事件相关设计中使用短基线(100–200毫秒)校正.3.在ICA分离之前去除明显的阵发性伪影(大、稀疏且具有变化的空间地形的伪影)可以改善ICA表现;例如,具有非平稳空间分布的时间过程的身体和电极运动会被ICA“分割”为许多不同的ICs。4.用于ICA分解的数据点越多越好,因为ICA的质量是数据点数量和电极数量的函数.5.当数据中有明显的platykurtic布源时,EEGlab中runica/pop_runica函数的“extended”参数可能会改善分离,或者可以在ICA之前使用陷波滤波器或EEGlab的cleanline插件也可用于消除50/60Hz噪声。6.对于ICA分解来说,准确地确定数据的范围是至关重要的,而Matlab并不总是自动准确地计算范围。例如,平均参考或插值电极都会影响数据范围,研究人员可以使用pop runica函数的pca参数,在ICA计算之前将数据的维数降低到正确的等级。7.有几十种盲源分离方法可用,可能有些方法对某些实验设计或者某些种类的信号更好.8.The garbage-in, garbage-out principle also applies to ICA, and it would be illconceived to believe that ICA is a panacea for fixing poor-quality recordings.
(6)ICA在分离去除眨眼\眼动噪声\肌电噪声方面表现很好,效果显著.
(7)ICA分离神经成分和噪声成分并不是尽善尽美的,有时候噪声ICs中也混有神经信号.数据分析人员通过检查成分的时间过程\拓扑地形图\频谱特征进而判断成分是噪声与否.
6.使用AAAs识别包含噪声的独立成分(ICs)
(1)尽管有很多特征可供参考,但是在识别分类噪声方面还是存在一些不稳定性的问题.成分识别与分类在不同专家间或者同一个专家的在不同的时间段间可能不可靠.
(2)研究人员遇到既像神经信号又像噪声的成分,或者两者都包含的成分时,识别判断的可靠性就比较低.另外,研究人员将花费大量的时间和精力来识别和分类这些成分.
(3)AAAs内置有分类权重,AAAs非常可靠,且消耗的时间要少的多.
(4)自动噪声校准工具:Multiple Artifact Rejection Algorithm (MARA),使用自适用分类器.MARA是一个EEGlab插件,它使用成分(IC)的频谱\拓扑地形图\时域以及源特征来分类噪声\神经,这些特征具有良好的预测效度.多项研究证明,MARA非常可靠有效.
(5)一种联合使用时间和空间特征的自动EEG噪声检测工具是ADJUST(Joint Use of Spatial and Temporal features),它是一个EEGlab插件,利用时间和空间属性来分类眼动噪声和信号不连续,ADJUST对其他类型噪声(肌电等)无效.ADJUST在检测眼动噪声和信号不连续方面的精度可以媲美人类专家.
(6)AAAs的假阳性情况非常少见,MARA和ADJUST更是罕见.当自动校准工具,针对摸棱两可的成分造成误判的时候,这些成分实际上是非常小的(<1-3%变异),这样的成分对于人类专家来说同样很难判断.
(7)情况似乎是这样的,神经源可能只占数据中方差的25%,因为眼睛、肌源性和线性噪声伪影的幅度通常比脑电信号大得多,并且贡献了最大的方差.
(8)AAAs方法(特别是MARA和ADJUST)具有极高的效度和可靠性.
三、概念化前额叶不对称:统计方法和理论推断
额部不对称研究可能得益于对统计方法的仔细考虑。额叶不对称在从情绪处理到精神病理学的各种模型中广泛相关,often reported as a predictor, outcome, mediator, or moderator.
1.前额叶不对称作为心理和神经指标
这里主要 有两种研究方法:一种是将静息态额叶不对称指数作为一种特征性的变量与不同的心理结构相关,并预测未来的情绪行为或精神病理学.另外一种方法是,将状态相关的额叶不对称作为当前状态或行为的一个函数.
2.前额叶不对称作为一种简单的关联(correlate)
经验性研究和文献综述,将额叶不对称总结为预测性变量或结果性变量.具体是哪一种并没有形成定论.额叶不对称作为一个简单的相关结果,并不能说明它是预测性的还是结果性的.
3.Moderation analysis
moderator作为第三个变量,改变了预测性变量和结果性变量间的关系.大量研究将前额叶不对称作为情绪过程的一个moderator,少量研究将前额叶不对称作为治疗反应的moderator.
4.Mediation Analysis
四、总结 and Best Practices
(8)
(8)
文献阅读感受:
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。