Hyperparameter tuning process
调整步骤
- 有哪些超参数需要调(红色最优先,黄色次之,紫色随后)

- 在调谐时,不要用grid;而是要随机选择参数,因为你并不知道什么参数会更重要

- 由粗到细。

范围选择
- 对于
n[l],#layers
n
[
l
]
,
#
l
a
y
e
r
s
等参数,使用random sampling uniformly是合适的。

- 对于learning_rate,应该在log scale上进行random sampling

- 对于在exponentially weighted averages中的
β
β
,需要做个小转换


900

被折叠的 条评论
为什么被折叠?



