理解信息熵

本文介绍了信息熵的概念及其在机器学习中的应用。通过实例说明信息熵是用来衡量信息量大小的单位,其大小与随机事件发生的概率成反比。文章还探讨了如何用数学公式来表达这一特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

  信息熵在机器学习和深度学习中应用广泛,如决策树算法、对比学习等方法。为了深入的学习相关知识,整理一下有关信息熵的东西,如有理解错误的地方各位大佬在评论区多多指正。
  此文为自己学习的记录,其中很多内容借鉴了许多资料,相关参考一并在参考文献中列出。

2 信息熵

  信息熵是衡量一条信息中带有信息量大小的单位, 如同衡量时间用秒,衡量物体的质量用g一样。那么这里还有一个问题:什么样的消息算作“信息量大”呢?什么样的消息又算作“信息量小呢”?
  这里有一个通俗理解:信息的大小跟随机事件的概率有关。越小概率的事情发生了产生的信息量越大,如湖南产生的地震了;越大概率的事情发生了产生的信息量越小,如太阳从东边升起来了(肯定发生嘛,没什么信息量)。
  所以信息熵用来描述一个事件混乱程度的大小(一个事件我们一定知道结果,那么这个事件的混乱程度就是0;一个时间充满随机性,我们猜不到或者很难猜到结果,那么他的混乱度就很大)
  更好的例子理解可见参考文献【2】。有了对上面信息量的定义之后即:

  • 越小概率的事情发生了产生的信息量越大
  • 越大概率的事情发生了产生的信息量越小

如何定义一个函数去描述这种现象?

参考文献

[1]通俗理解信息熵
[2]一文看懂信息熵的本质——谈谈自己对信息熵的理解
[3]信息熵是什么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值