B - Working out CodeForces - 429B (dp)

本文介绍了一个经典的算法问题:两个玩家分别从不同起点出发,在网格中行走以获得最大总分数,同时仅允许路径在一个格子处相交。文章通过动态规划的方法,详细阐述了如何计算从各个起点出发到任意格子的最大得分路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:
给出n*m个格子,每个格子都有一定的分数,走过这个格子可以获得分数。
A 从(1,1)沿 下 或 右 走到(n,m)
B 从(n,1)沿 上 或 右 走到(1,m)
两人路径有且只能有一个格子重合(重合格子的分数不算), 求两人分数之和的最大值.
若要保持只有一个格子重合
1) A向右走,相遇后继续向右走,而B向上走,相遇后继续向上走
2) A向下走,相遇后继续向下走,而B向右走,相遇后继续向右走
处理四个顶点出发到任一点的最大值。
代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<vector>
#include<set>
#include<queue>
#define INF 0x3f3f3f3f
#define LL long long

using namespace std;
const int maxn=1000+5;
int Map[maxn][maxn];
int dp1[maxn][maxn]={0},dp2[maxn][maxn]={0},dp3[maxn][maxn]={0},dp4[maxn][maxn]={0};
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);

    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        scanf("%d",&Map[i][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        dp1[i][j]=Map[i][j]+max(dp1[i-1][j],dp1[i][j-1]);//从(1,1)出发
    for(int i=n;i>=1;i--)
        for(int j=m;j>=1;j--)
        dp2[i][j]=Map[i][j]+max(dp2[i+1][j],dp2[i][j+1]);//从(n,m)出发
    for(int i=n;i>=1;i--)
        for(int j=1;j<=m;j++)
        dp3[i][j]=Map[i][j]+max(dp3[i+1][j],dp3[i][j-1]);//从(n,1)出发
    for(int i=1;i<=n;i++)
        for(int j=m;j>=1;j--)
        dp4[i][j]=Map[i][j]+max(dp4[i-1][j],dp4[i][j+1]);//从(1,m)出发
        //遍历
        int res=0;
    for(int i=2;i<n;i++)
        for(int j=2;j<m;j++)
    {
        res=max(res,dp1[i-1][j]+dp2[i+1][j]+dp3[i][j-1]+dp4[i][j+1]);
        res=max(res,dp1[i][j-1]+dp2[i][j+1]+dp3[i+1][j]+dp4[i-1][j]);

    }
    printf("%d\n",res);

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值