题意:
给出n*m个格子,每个格子都有一定的分数,走过这个格子可以获得分数。
A 从(1,1)沿 下 或 右 走到(n,m)
B 从(n,1)沿 上 或 右 走到(1,m)
两人路径有且只能有一个格子重合(重合格子的分数不算), 求两人分数之和的最大值.
若要保持只有一个格子重合
1) A向右走,相遇后继续向右走,而B向上走,相遇后继续向上走
2) A向下走,相遇后继续向下走,而B向右走,相遇后继续向右走
处理四个顶点出发到任一点的最大值。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<vector>
#include<set>
#include<queue>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int maxn=1000+5;
int Map[maxn][maxn];
int dp1[maxn][maxn]={0},dp2[maxn][maxn]={0},dp3[maxn][maxn]={0},dp4[maxn][maxn]={0};
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&Map[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
dp1[i][j]=Map[i][j]+max(dp1[i-1][j],dp1[i][j-1]);//从(1,1)出发
for(int i=n;i>=1;i--)
for(int j=m;j>=1;j--)
dp2[i][j]=Map[i][j]+max(dp2[i+1][j],dp2[i][j+1]);//从(n,m)出发
for(int i=n;i>=1;i--)
for(int j=1;j<=m;j++)
dp3[i][j]=Map[i][j]+max(dp3[i+1][j],dp3[i][j-1]);//从(n,1)出发
for(int i=1;i<=n;i++)
for(int j=m;j>=1;j--)
dp4[i][j]=Map[i][j]+max(dp4[i-1][j],dp4[i][j+1]);//从(1,m)出发
//遍历
int res=0;
for(int i=2;i<n;i++)
for(int j=2;j<m;j++)
{
res=max(res,dp1[i-1][j]+dp2[i+1][j]+dp3[i][j-1]+dp4[i][j+1]);
res=max(res,dp1[i][j-1]+dp2[i][j+1]+dp3[i+1][j]+dp4[i-1][j]);
}
printf("%d\n",res);
}