【Python机器学习】KNN分类算法 ——KNeighborsClassifier函数实现

该博客介绍了如何使用Python的sklearn库构建KNN(K近邻)分类器来对Iris数据集进行预测。首先,定义了KNeighborsClassifier模型,设置了n_neighbors参数为5,并使用fit函数对训练数据进行拟合。接着,对新的样本数据进行预测,结果显示预测目标为'setosa'。最后,评估模型在测试集上的表现,测试集预测精度和得分均为0.97。
摘要由CSDN通过智能技术生成

构造函数

 KNeighborsClassifier(n_neighbors=5, weights='uniform', 
                      algorithm='auto', leaf_size=30, 
                      p=2, metric='minkowski', 
                      metric_params=None, n_jobs=1, **kwargs)

n_neighbors: 默认值为5,表示查询k个最近邻的数目
algorithm: {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’},指定用于计算最近邻的算法,auto表示试图采用最适合的算法计算最近邻
leaf_size: 传递给‘ball_tree’或‘kd_tree’的叶子大小
metric: 用于树的距离度量。默认’minkowski与P = 2(即欧氏度量)
n_jobs: 并行工作的数量,如果设为-1,则作业的数量被设置为CPU内核的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值