排序:
默认
按更新时间
按访问量

目标检测最新方法介绍

https://handong1587.github.io/deep_learning/2015/10/09/nlp.html Jump to... LeaderboardPapers R-CNNMultiBoxSPP-NetDeepID-NetNoCFast R...

2017-01-01 19:11:38

阅读数:20010

评论数:0

理解FFT(一):为什么用正弦函数进行傅立叶变换

根据线性代数的基本知识Ax=λx , x就是特征向量,λ是特征值,信号A乘以x,只改变了λ大小,而方向没有变化。线性时不变系统LTI的特征向量是e^jwt(1),根据欧拉公式,e^jwt=coswt+jsinwt,从中可以看出,线性时不变系统的特征向量就是正弦(余弦只是正弦改变相位)波,当系统输入...

2016-12-27 10:40:25

阅读数:2600

评论数:0

打破砂锅理解深度学习(一):引言

最近开始转到深度学习上研发交通标志识别的项目,虽然用开源框架能够训练出识别率比较好的分类模型,但有很多问题不明白,所以准备写个博客专题,自负压力,自问自答,与大家一起交流学习。         该专题计划用问答式的方式记录研发过程中遇到的问题,用打破砂锅问到底的精神挖掘深度学习知识,力求能够让一个...

2016-10-12 11:07:15

阅读数:725

评论数:0

【转】数据挖掘系列(10)——卷积神经网络算法的一个实现

前言   从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的...

2016-05-31 09:19:50

阅读数:922

评论数:0

双边滤波的白话理解

双边滤波就是在对像素进行卷积时,不单单用位置(定义域)信息,还要用到值域信息。你看看高斯卷积的模板,就能明白什么是位置信息。值域信息就是当前像素与邻域像素的差别,差别越大(也就是边界位置),权重越小,这个小权重施加到高斯模板上,就会让高斯权重变小,模糊变弱,也就起到了在边界处弱化高斯模糊的作用,双...

2016-02-18 17:59:27

阅读数:2232

评论数:0

为什么高斯分布的函数要这样写?

上面的公式是标准正态公布的密度函数,但为什么公式要这样写?下面是相关原因: 也就是说,公式这样写可以保证积分为1,那么为什么用e指数函数?下面是e指数函数图像: e指数函数图像特征: 过点(0,1),过第二、第一象限。 定义域是R,值域是f(x)>0 在定义域内f(x)是随着x的增大...

2016-01-28 18:18:32

阅读数:1030

评论数:0

如何理解线性代数

大概解决我学线代开始的基本上所有的困惑。。。 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。 可怜的chen...

2016-01-23 09:50:24

阅读数:703

评论数:0

OpenCV在未知相机内参数情况下的立体图像矫正方法及注意事项

很多时候我们不知道摄像机的内参数矩阵,并且我们也不太关注内参数到底是多少,因为我们仅仅关心如何得到两幅图像的稠密匹配,或者两幅图像的差别——例如我们只想计算两幅图像的视差图,或者说得到两幅立体图像对的深度图就足够了。既然不知道摄像机的内参数,那么就只能借助对极约束来达到目的了。通过计算两幅图像的基...

2016-01-12 11:43:05

阅读数:1404

评论数:0

特征向量的几何意义

特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍 是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可 以取适...

2016-01-07 09:40:00

阅读数:928

评论数:0

旋转矩阵(Rotate Matrix)的性质分析

学过矩阵理论或者线性代数的肯定知道正交矩阵(orthogonal matrix)是一个非常好的矩阵,为什么这么说?原因有一下几点: 正交矩阵每一列都是单位矩阵,并且两两正交。最简单的正交矩阵就是单位阵。正交矩阵的逆(inverse)等于正交矩阵的转置(transpose)。同时可以推论出正交...

2015-11-10 16:00:52

阅读数:48119

评论数:3

摄像机矩阵详解

之前学习摄像机模型的时候弄得不是太清楚,现在记录一下。 1.摄像机矩阵的分解 摄像机矩阵可以表示为如下形式: P=[M|−MC](1) 其中,C为摄像机在世界坐标系中的位置,求出摄像机的位置C只需要用−M−1乘以摄像机矩阵最后一列。对摄像机矩阵进一步分解可得: ...

2015-11-02 16:37:08

阅读数:7093

评论数:1

[转]C语言math.h库函数中atan与atan2的区别

今天做图像旋转练习的时候,要根据鼠标的移动轨迹来确定转过的角度,于是就很自然的想到通过三个点来确定这个转过的角度:图像的中心,鼠标按下的点,鼠标拖到的点。想到使用斜率来计算角度,于是联想到数学公式中的arctan反正切函数,通过搜索得知在math.h函数库中有2个函数:atan与atan2都可以求...

2015-10-28 11:51:54

阅读数:3100

评论数:0

高等数学体系结构

说实话,知道这些没有任何用处。难不难也看个人的喜欢和思维习惯,有的人学代数就是很难但学分析会觉得简单,有的人又正好相反。简单地说一下;数学中有“三低三高”之说,也就是指分析、代数和几何三个分支,其中三低是指大学的基础课程,分析主要指数学分析(包括实数理论、微积分理论、级数理论、微分方程等),代数主...

2015-09-30 08:57:41

阅读数:3071

评论数:0

华山论剑----常用角点检测与角点匹配方法比较

最近这些日子,我在中科院实习了一段时间,收获了很多宝贵的知识和经验,也认识了一些朋友,在这里感谢老师们对我的指导和建议。作为一名图像处理专业的数学Geek,我很喜欢做关于图像方面的算法研究,在这里把近几年的角点特征匹配方法做个总结,和大家分享一下。   图像匹配能够应用的场合非常多,如目标跟踪,...

2015-09-09 14:48:20

阅读数:1841

评论数:1

本质矩阵和基础矩阵的区别是什么

先了解下对极几何,两个相机在不同位置(实际要求光心位置不同即可)拍摄两张图,这个模型就是对极几何,如下图(摘自《计算机视觉中的多视图几何》): 两摄像机光心分别是C和C',图像平面是两白色的平面,空间中某一个点X在两张图的投影点分别是x和x'。这样的模型就是对极几何,空间点和两光心组成的平面...

2015-09-09 14:28:02

阅读数:1577

评论数:0

比较 KAZE 与 SIFT 的算法

根据测试结果,两种算法对于ubc、bikes、trees和boat四种图集都有很好的鲁棒性,能够准确将图像匹配起来。两种算法的差异主要是在bark、graf、leuven和wall图集中表现出来的。 方法/步骤 1 bark图集主要检验特征算法...

2015-09-09 14:15:23

阅读数:2090

评论数:0

齐次坐标的理解

一直对齐次坐标这个概念的理解不够彻底,只见大部分的书中说道“齐次坐标在仿射变换中非常的方便”,然后就没有了后文,今天在一个叫做“三百年 重生”的博客上看到一篇关于透视投影变换的探讨的文章,其中有对齐次坐标有非常精辟的说明,特别是针对这样一句话进行了有力的证明:“齐次坐标表示是计算机图形学的重要手段...

2015-09-09 13:43:49

阅读数:726

评论数:0

OpenCV中特征点提取和匹配的通用方法

OpenCV在新版本中把很多C语言的代码都重新整理成了C++代码,让我们在使用的时候更加方便灵活。其中对于特征点的提取和匹配,充分体现了C++的强大。下面直接用例子来说明。假设我们有两幅图:1.bmp和2.bmp,要从中提取体征点并匹配,代码如下:   // Load image from f...

2015-09-09 13:35:32

阅读数:1716

评论数:1

调试方法

计算机组成原理→DOS命令→汇编语言→C语言(不包括C++)、代码书写规范→数据结构、编译原理、操作系统→计算机网络、数据库原理、正则表达式→其它语言(包括C++)、架构…… 对学习编程者的忠告: 眼过千遍不如手过一遍! 书看千行不如手敲一行! 手敲千行不如单步一行! 单步源代码...

2015-08-28 09:41:17

阅读数:479

评论数:0

计算机视觉整理库

本文章有转载自其它博文,也有自己发现的新库添加进来的,如果发现有新的库,可以推荐我加进来 转自:http://www.cnblogs.com/tornadomeet/archive/2012/05/24/2515980.html               http://www.cnb...

2015-08-25 11:59:21

阅读数:3020

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭