PAT乙级真题 1091 N-自守数 C++实现

题目

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92^2=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK^2的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No

思路

从1到9遍历N,将 NK^2和N转换为字符串,如果前者末尾部分与后者相同,则找到了所求自守数,标记flag,跳出循环;

如果未找到则输出No。

代码

#include <iostream>
#include <string>
using namespace std;

int main(){
    int m;
    cin >> m;
    for (int i=0; i<m; i++){
        int k;
        cin >> k;
        bool notFound = true;
        for (int n=1; n<10; n++){
            string s1 = to_string(n * k * k);
            string s2 = to_string(k);
            if (s1.substr(s1.size()-s2.size(), s2.size()) == s2){
                notFound = false;
                cout << n << " " << s1 << endl;
                break;
            }
        }
        if (notFound){
            cout << "No" << endl;
        }
    }
    return 0;
}

发布了129 篇原创文章 · 获赞 7 · 访问量 2893
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览