elasticsearch系列三:索引详解(分词器、文档管理、路由详解(集群))

一、分词器

1. 认识分词器

 1.1 Analyzer   分析器

 在ES中一个Analyzer 由下面三种组件组合而成:

character filter :字符过滤器,对文本进行字符过滤处理,如处理文本中的html标签字符。处理完后再交给tokenizer进行分词。一个analyzer中可包含0个或多个字符过滤器,多个按配置顺序依次进行处理
tokenizer:分词器,对文本进行分词。一个analyzer必需且只可包含一个tokenizer
token filter:词项过滤器,对tokenizer分出的词进行过滤处理。如转小写、停用词处理、同义词处理。一个analyzer可包含0个或多个词项过滤器,按配置顺序进行过滤

1.2 如何测试分词器

复制代码

POST _analyze
{
  "analyzer": "whitespace",
  "text":     "The quick brown fox."
}

POST _analyze
{
  "tokenizer": "standard",
  "filter":  [ "lowercase", "asciifolding" ],
  "text":      "Is this déja vu?"
}

复制代码

 

position:第几个词

offset:词的偏移位置

2. 内建的character filter

HTML Strip Character Filter
  html_strip :过滤html标签,解码HTML entities like &. 
Mapping Character Filter
  mapping :用指定的字符串替换文本中的某字符串。 
Pattern Replace Character Filter
  pattern_replace :进行正则表达式替换。

2.1 HTML Strip Character Filter 

POST _analyze
{
  "tokenizer":      "keyword", 
  "char_filter":  [ "html_strip" ],
  "text": "<p>I&apos;m so <b>happy</b>!</p>"
}

 

 在索引中配置:

复制代码

PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "keyword",
          "char_filter": ["my_char_filter"]
        }
      },
      "char_filter": {
        "my_char_filter": {
          "type": "html_strip",
          "escaped_tags": ["b"]
        }
      }
    }
  }
}

复制代码

escaped_tags 用来指定例外的标签。 如果没有例外标签需配置,则不需要在此进行客户化定义,在上面的my_analyzer中直接使用 html_strip

测试:

POST my_index/_analyze
{
  "analyzer": "my_analyzer",
  "text": "<p>I&apos;m so <b>happy</b>!</p>"
}

2.2 Mapping character filter

官网链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-mapping-charfilter.html

复制代码

PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "keyword",
          "char_filter": [
            "my_char_filter"
          ]
        }
      },
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",
          "mappings": [
            "٠ => 0",
            "١ => 1",
            "٢ => 2",
            "٣ => 3",
            "٤ => 4",
            "٥ => 5",
            "٦ => 6",
            "٧ => 7",
            "٨ => 8",
            "٩ => 9"
          ]
        }
      }
    }
  }
}

复制代码

 测试

POST my_index/_analyze
{
  "analyzer": "my_analyzer",
  "text": "My license plate is ٢٥٠١٥"
}

 

2.3 Pattern Replace Character Filter

 官网链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-replace-charfilter.html

复制代码

PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "standard",
          "char_filter": [
            "my_char_filter"
          ]
        }
      },
      "char_filter": {
        "my_char_filter": {
          "type": "pattern_replace",
          "pattern": "(\\d+)-(?=\\d)",
          "replacement": "$1_"
        }
      }
    }
  }
}

复制代码

测试

POST my_index/_analyze
{
  "analyzer": "my_analyzer",
  "text": "My credit card is 123-456-789"
}

 

 

3. 内建的Tokenizer

 官网链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html

Standard Tokenizer
Letter Tokenizer
Lowercase Tokenizer
Whitespace Tokenizer
UAX URL Email Tokenizer
Classic Tokenizer
Thai Tokenizer
NGram Tokenizer
Edge NGram Tokenizer
Keyword Tokenizer
Pattern Tokenizer
Simple Pattern Tokenizer
Simple Pattern Split Tokenizer
Path Hierarchy Tokenizer

前面集成的中文分词器Ikanalyzer中提供的tokenizer:ik_smart 、 ik_max_word

 测试tokenizer

复制代码

POST _analyze
{
  "tokenizer":      "standard", 
  "text": "张三说的确实在理"
}

POST _analyze
{
  "tokenizer":      "ik_smart", 
  "text": "张三说的确实在理"
}

复制代码

4.  内建的Token Filter

ES中内建了很多Token filter ,详细了解:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html

Lowercase Token Filter :lowercase 转小写
Stop Token Filter :stop 停用词过滤器
Synonym Token Filter: synonym 同义词过滤器

 说明:中文分词器Ikanalyzer中自带有停用词过滤功能。

 4.1 Synonym Token Filter 同义词过滤器

复制代码

PUT /test_index
{
    "settings": {
        "index" : {
            "analysis" : {
                "analyzer" : {
                    "my_ik_synonym" : {
                        "tokenizer" : "ik_smart",
                        "filter" : ["synonym"]
                    }
                },
                "filter" : {
                    "synonym" : {
                        "type" : "synonym",
                         <!-- synonyms_path:指定同义词文件(相对config的位置)-->
                        "synonyms_path" : "analysis/synonym.txt"
                    }
                }
            }
        }
    }
}

复制代码

 同义词定义格式

ES同义词格式支持 solr、 WordNet 两种格式。

在analysis/synonym.txt中用solr格式定义如下同义词

张三,李四
电饭煲,电饭锅 => 电饭煲
电脑 => 计算机,computer

注意:

文件一定要UTF-8编码

一行一类同义词,=> 表示标准化为

测试:通过例子的结果了解同义词的处理行为

复制代码

POST test_index/_analyze
{
  "analyzer": "my_ik_synonym",
  "text": "张三说的确实在理"
}

POST test_index/_analyze
{
  "analyzer": "my_ik_synonym",
  "text": "我想买个电饭锅和一个电脑"
}

复制代码

5. 内建的Analyzer

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html

Standard Analyzer
Simple Analyzer
Whitespace Analyzer
Stop Analyzer
Keyword Analyzer
Pattern Analyzer
Language Analyzers
Fingerprint Analyzer

集成的中文分词器Ikanalyzer中提供的Analyzer:ik_smart 、 ik_max_word

内建的和集成的analyzer可以直接使用。如果它们不能满足我们的需要,则我们可自己组合字符过滤器、分词器、词项过滤器来定义自定义的analyzer

5.1 自定义 Analyzer

配置参数:

复制代码

PUT my_index8
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_ik_analyzer": {
          "type": "custom",
          "tokenizer": "ik_smart",
          "char_filter": [
            "html_strip"
          ],
          "filter": [
             "synonym"
          ]
        }
      },
      "filter": {
        "synonym": {
          "type": "synonym",
          "synonyms_path": "analysis/synonym.txt"
        }
      }    }  }}

复制代码

 5.2 为字段指定分词器

复制代码

PUT my_index8/_mapping/_doc
{
  "properties": {
    "title": {
        "type": "text",
        "analyzer": "my_ik_analyzer"
    }
  }
}

复制代码

 如果该字段的查询需要使用不同的analyzer

复制代码

PUT my_index8/_mapping/_doc
{
  "properties": {
    "title": {
        "type": "text",
        "analyzer": "my_ik_analyzer",
        "search_analyzer": "other_analyzer" 
    }
  }
}

复制代码

 测试结果

复制代码

PUT my_index8/_doc/1
{
  "title": "张三说的确实在理"
}

GET /my_index8/_search
{
  "query": {
    "term": {
      "title": "张三"
    }
  }
}

复制代码

 5.3 为索引定义个default分词器

复制代码

PUT /my_index10
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default": {
          "tokenizer": "ik_smart",
          "filter": [
            "synonym"
          ]
        }
      },
      "filter": {
        "synonym": {
          "type": "synonym",
          "synonyms_path": "analysis/synonym.txt"
        }
      }
    }
  },
"mappings": {
    "_doc": {
      "properties": {
        "title": {
          "type": "text"
        }
      }
    }
  }
}

复制代码

 测试结果:

复制代码

PUT my_index10/_doc/1
{
  "title": "张三说的确实在理"
}

GET /my_index10/_search
{
  "query": {
    "term": {
      "title": "张三"
    }
  }
}

复制代码

 6. Analyzer的使用顺序

 我们可以为每个查询、每个字段、每个索引指定分词器。

 在索引阶段ES将按如下顺序来选用分词:

首先选用字段mapping定义中指定的analyzer
字段定义中没有指定analyzer,则选用 index settings中定义的名字为default 的analyzer。
如index setting中没有定义default分词器,则使用 standard analyzer.

查询阶段ES将按如下顺序来选用分词:

The analyzer defined in a full-text query.
The search_analyzer defined in the field mapping.
The analyzer defined in the field mapping.
An analyzer named default_search in the index settings.
An analyzer named default in the index settings.
The standard analyzer.

二、文档管理

 

1. 新建文档

指定文档id,新增/修改

复制代码

PUT twitter/_doc/1
{
    "id": 1,
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

复制代码

新增,自动生成文档id

复制代码

POST twitter/_doc/
{
    "id": 1,
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

复制代码

 返回结果说明:

2. 获取单个文档

 HEAD twitter/_doc/11

 GET twitter/_doc/1

不获取文档的source:

 GET twitter/_doc/1?_source=false

 获取文档的source:

GET twitter/_doc/1/_source

复制代码

{
  "_index": "twitter",
  "_type": "_doc",
  "_id": "1",
  "_version": 2,
  "found": true,
  "_source": {
    "id": 1,
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "trying out Elasticsearch"
  }}

复制代码

 获取存储字段

复制代码

PUT twitter11
{
   "mappings": {
      "_doc": {
         "properties": {
            "counter": {
               "type": "integer",
               "store": false
            },
            "tags": {
               "type": "keyword",
               "store": true
            } }   }  }}

PUT twitter11/_doc/1
{
    "counter" : 1,
    "tags" : ["red"]
}

GET twitter11/_doc/1?stored_fields=tags,counter

复制代码

 

3. 获取多个文档 _mget

 方式1:

复制代码

GET /_mget
{
    "docs" : [
        {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "1"
        },
        {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "2"
            "stored_fields" : ["field3", "field4"]
        }
    ]
}

复制代码

 方式2:

复制代码

GET /twitter/_mget
{
    "docs" : [
        {
            "_type" : "_doc",
            "_id" : "1"
        },
        {
            "_type" : "_doc",
            "_id" : "2"
        }
    ]
}

复制代码

  方式3:

复制代码

GET /twitter/_doc/_mget
{
    "docs" : [
        {
            "_id" : "1"
        },
        {
            "_id" : "2"
        }
    ]
}

复制代码

  方式4:

GET /twitter/_doc/_mget
{
    "ids" : ["1", "2"]
}

 4. 删除文档

指定文档id进行删除

DELETE twitter/_doc/1

 用版本来控制删除

DELETE twitter/_doc/1?version=1

 返回结果:

复制代码

{
    "_shards" : {
        "total" : 2,
        "failed" : 0,
        "successful" : 2
    },
    "_index" : "twitter",
    "_type" : "_doc",
    "_id" : "1",
    "_version" : 2,
    "_primary_term": 1,
    "_seq_no": 5,
    "result": "deleted"
}

复制代码

 查询删除

复制代码

POST twitter/_delete_by_query
{
  "query": { 
    "match": {
      "message": "some message"
    }
  }
}

复制代码

 当有文档有版本冲突时,不放弃删除操作(记录冲突的文档,继续删除其他复合查询的文档)

POST twitter/_doc/_delete_by_query?conflicts=proceed
{
  "query": {
    "match_all": {}
  }
}

 通过task api 来查看 查询删除任务

GET _tasks?detailed=true&actions=*/delete/byquery

查询具体任务的状态

GET /_tasks/taskId:1

 取消任务

POST _tasks/task_id:1/_cancel

5. 更新文档

 指定文档id进行修改

复制代码

PUT twitter/_doc/1
{
    "id": 1,
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

复制代码

乐观锁并发更新控制

复制代码

PUT twitter/_doc/1?version=1
{
    "id": 1,
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

复制代码

 返回结果

复制代码

{
  "_index": "twitter",
  "_type": "_doc",
  "_id": "1",
  "_version": 3,
  "result": "updated",
  "_shards": {
    "total": 3,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 2,
  "_primary_term": 3
}

复制代码

6.Scripted update 通过脚本来更新文档

6.1 准备一个文档

PUT uptest/_doc/1
{
    "counter" : 1,
    "tags" : ["red"]
}

6.2、对文档1的counter + 4

复制代码

POST uptest/_doc/1/_update
{
    "script" : {
        "source": "ctx._source.counter += params.count",
        "lang": "painless",
        "params" : {
            "count" : 4
        }
    }
}

复制代码

6.3、往数组中加入元素

复制代码

POST uptest/_doc/1/_update
{
    "script" : {
        "source": "ctx._source.tags.add(params.tag)",
        "lang": "painless",
        "params" : {
            "tag" : "blue"
        }
    }
}

复制代码

脚本说明:painless是es内置的一种脚本语言,ctx执行上下文对象(通过它还可访问_index, _type, _id, _version, _routing and _now (the current timestamp) ),params是参数集合

 说明:脚本更新要求索引的_source 字段是启用的。更新执行流程:

a、获取到原文档
b、通过_source字段的原始数据,执行脚本修改。
c、删除原索引文档
d、索引修改后的文档 
它只是降低了一些网络往返,并减少了get和索引之间版本冲突的可能性。

 6.4、添加一个字段

POST uptest/_doc/1/_update
{
    "script" : "ctx._source.new_field = 'value_of_new_field'"
}

6.5、移除一个字段

POST uptest/_doc/1/_update
{
    "script" : "ctx._source.remove('new_field')"
}

6.6、判断删除或不做什么

复制代码

POST uptest/_doc/1/_update
{
    "script" : {
        "source": "if (ctx._source.tags.contains(params.tag)) { ctx.op = 'delete' } else { ctx.op = 'none' }",
        "lang": "painless",
        "params" : {
            "tag" : "green"
        }
    }
}

复制代码

6.7、合并传人的文档字段进行更新

POST uptest/_doc/1/_update
{
    "doc" : {
        "name" : "new_name"
    }
}

6.8、再次执行7,更新内容相同,不需做什么

复制代码

{
  "_index": "uptest",
  "_type": "_doc",
  "_id": "1",
  "_version": 4,
  "result": "noop",
  "_shards": {
    "total": 0,
    "successful": 0,
    "failed": 0
  }
}

复制代码

6.9、设置不做noop检测

复制代码

POST uptest/_doc/1/_update
{
    "doc" : {
        "name" : "new_name"
    },
    "detect_noop": false
}

复制代码

什么是noop检测?

即已经执行过的脚本不再执行

6.10、upsert 操作:如果要更新的文档存在,则执行脚本进行更新,如不存在,则把 upsert中的内容作为一个新文档写入。

复制代码

POST uptest/_doc/1/_update
{
    "script" : {
        "source": "ctx._source.counter += params.count",
        "lang": "painless",
        "params" : {
            "count" : 4
        }
    },
    "upsert" : {
        "counter" : 1
    }
}

复制代码

7. 通过条件查询来更新文档

满足查询条件的才更新

复制代码

POST twitter/_update_by_query
{
  "script": {
    "source": "ctx._source.likes++",
    "lang": "painless"
  },
  "query": {
    "term": {
      "user": "kimchy"
    }
  }
}

复制代码

8. 批量操作

批量操作API /_bulk 让我们可以在一次调用中执行多个索引、删除操作。这可以大大提高索引数据的速度。批量操作内容体需按如下以新行分割的json结构格式给出:

语法:

action_and_meta_data\n
optional_source\n
action_and_meta_data\n
optional_source\n
....
action_and_meta_data\n
optional_source\n

说明:

action_and_meta_data: action可以是 index, create, delete and update ,meta_data 指: _index ,_type,_id 请求端点可以是: /_bulk, /{index}/_bulk, {index}/{type}/_bulk

示例:

复制代码

POST _bulk
{ "index" : { "_index" : "test", "_type" : "_doc", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_type" : "_doc", "_id" : "2" } }
{ "create" : { "_index" : "test", "_type" : "_doc", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_type" : "_doc", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }

复制代码

8.1 curl + json 文件 批量索引多个文档

注意:accounts.json要放在执行curl命令的同等级目录下,后续学习的测试数据基本都使用这份银行的数据了

curl -H "Content-Type: application/json" -XPOST "localhost:9200/bank/_doc/_bulk?pretty&refresh" --data-binary "@accounts.json"

accounts.json:

 View Code

9. reindex 重索引

Reindex API /_reindex 让我们可以将一个索引中的数据重索引到另一个索引中(拷贝),要求源索引的_source 是开启的。目标索引的setting 、mapping 信息与源索引无关。

什么时候需要重索引?

即当需要做数据的拷贝的时候

复制代码

POST _reindex
{
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter"
  }
}

复制代码

重索引要考虑的一个问题:目标索引中存在源索引中的数据,这些数据的version如何处理。

1、如果没有指定version_type 或指定为 internal,则会是采用目标索引中的版本,重索引过程中,执行的就是新增、更新操作。

复制代码

POST _reindex
{
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter",
    "version_type": "internal"
  }
}

复制代码

2、如果想使用源索引中的版本来进行版本控制更新,则设置 version_type 为extenal。重索引操作将写入不存在的,更新旧版本的数据。

复制代码

POST _reindex
{
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter",
    "version_type": "external"
  }
}

复制代码

如果你只想从源索引中复制目标索引中不存在的文档数据,可以指定 op_type 为 create 。此时存在的文档将触发 版本冲突(会导致放弃操作),可设置“conflicts”: “proceed“,跳过继续

复制代码

POST _reindex
{
  "conflicts": "proceed",
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter",
    "op_type": "create"
  }
}

复制代码

你也可以只索引源索引的一部分数据,通过 type 或 查询来指定你需要的数据

复制代码

POST _reindex
{
  "source": {
    "index": "twitter",
    "type": "_doc",
    "query": {
      "term": {
        "user": "kimchy"
      }
    }
  },
  "dest": {
    "index": "new_twitter"
  }
}

复制代码

可以从多个源获取数据

复制代码

POST _reindex
{
  "source": {
    "index": ["twitter", "blog"],
    "type": ["_doc", "post"]
  },
  "dest": {
    "index": "all_together"
  }
}

复制代码

可以限定文档数量

复制代码

POST _reindex
{
  "size": 10000,
  "source": {
    "index": "twitter",
    "sort": { "date": "desc" }
  },
  "dest": {
    "index": "new_twitter"
  }
}

复制代码

可以选择复制源文档的哪些字段

复制代码

POST _reindex
{
  "source": {
    "index": "twitter",
    "_source": ["user", "_doc"]
  },
  "dest": {
    "index": "new_twitter"
  }
}

复制代码

可以用script来改变文档

复制代码

POST _reindex
{
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter",
    "version_type": "external"
  },
  "script": {
    "source": "if (ctx._source.foo == 'bar') {ctx._version++; ctx._source.remove('foo')}",
    "lang": "painless"
  }
}

复制代码

可以指定路由值把文档放到哪个分片上

复制代码

POST _reindex
{
  "source": {
    "index": "source",
    "query": {
      "match": {
        "company": "cat"
      }
    }
  },
  "dest": {
    "index": "dest",
    "routing": "=cat"
  }
}

复制代码

从远程源复制

复制代码

POST _reindex
{
  "source": {
    "remote": {
      "host": "http://otherhost:9200",
      "username": "user",
      "password": "pass"
    },
    "index": "source",
    "query": {
      "match": {
        "test": "data"
      }
    }
  },
  "dest": {
    "index": "dest"
  }
}

复制代码

通过_task 来查询执行状态

GET _tasks?detailed=true&actions=*reindex

10. refresh

对于索引、更新、删除操作如果想操作完后立马重刷新可见,可带上refresh参数

PUT /test/_doc/1?refresh
{"test": "test"}
PUT /test/_doc/2?refresh=true
{"test": "test"}

refresh 可选值说明

未给值或=true,则立马会重刷新读索引。
=false ,相当于没带refresh 参数,遵循内部的定时刷新。
=wait_for ,登记等待刷新,当登记的请求数达到index.max_refresh_listeners 参数设定的值时(defaults to 1000),将触发重刷新。

三、路由详解

1. 集群组成

第一个节点启动

 

说明:首先启动的一定是主节点,主节点存储的是集群的元数据信息

Node2启动

 

说明:

Node2节点启动之前会配置集群的名称Cluster-name:ess,然后配置可以作为主节点的ip地址信息discovery.zen.ping.unicast.hosts: [“10.0.1.11",“10.0.1.12"],配置自己的ip地址networ.host: 10.0.1.12;

Node2启动的过程中会去找到主节点Node1告诉Node1我要加入到集群里面了,主节点Node1接收到请求以后看Node2是否满足加入集群的条件,如果满足就把node2的ip地址加入的元信息里面,然后广播给集群中的其他节点有

新节点加入,并把最新的元信息发送给其他的节点去更新

Node3..NodeN加入

 

说明:集群中的所有节点的元信息都是和主节点一致的,因为一旦有新的节点加入进来,主节点会通知其他的节点同步元信息

2. 在集群中创建索引的流程

 

3. 有索引的集群

 

4. 集群有节点出现故障,如主节点挂了,会重新选择主节点

 

5. 在集群中索引文档

 

索引文档的步骤:
1、node2计算文档的路由值得到文档存放的分片(假定路由选定的是分片0)。
2、将文档转发给分片0(P0)的主分片节点 node1。
3、node1索引文档,同步给副本(R0)节点node3索引文档。
4、node1向node2反馈结果
5、node2作出响应

6. 文档是如何路由的

文档该存到哪个分片上?
决定文档存放到哪个分片上就是文档路由。ES中通过下面的计算得到每个文档的存放分片:

shard = hash(routing) % number_of_primary_shards

 参数说明:

routing 是用来进行hash计算的路由值,默认是使用文档id值。我们可以在索引文档时通过routing参数指定别的路由值

number_of_primary_shards:创建索引时指定的主分片数

POST twitter/_doc?routing=kimchy
{
    "user" : "kimchy",
    "post_date" : "2009-11-15T14:12:12",
    "message" : "trying out Elasticsearch"
}

 在索引、删除、更新、查询中都可以使用routing参数(可多值)指定操作的分片。

创建索引时强制要求给定路由值:

复制代码

PUT my_index2
{
  "mappings": {
    "_doc": {
      "_routing": {
        "required": true 
      }
    }
  }
}

复制代码

 7. 在集群中进行搜索

 

搜索的步骤:如要搜索 索引 s0
1、node2解析查询。
2、node2将查询发给索引s0的分片/副本(R1,R2,R0)节点
3、各节点执行查询,将结果发给Node2
4、Node2合并结果,作出响应。

8. Master节点的工作是什么?

1. 存储集群的元信息,如集群名称、集群中的节点

2. 转发创建索引和索引文档的请求

3. 和其他的节点进行通信,告诉其他节点有新的节点加入等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值