【大数据】Flink + Kafka 实现通用流式数据处理详解

目录

一、前言

二、流式数据处理场景介绍

2.1 流式数据处理概述

2.1.1 流式数据处理场景介绍

2.2 流式数据处理技术栈

2.2.1 数据采集

2.2.2 数据处理

2.2.3 数据存储

2.2.4 数据展示

2.3 流式数据处理场景面临的问题和挑战

三、通用的流式数据处理场景解决方案

3.1 基本流式处理架构

3.2 流处理与批处理结合

3.3 实时数据仓库

3.4 流式 ETL 架构

四、实验环境准备

4.1 kafka搭建过程

4.1.1 创建相关的目录

4.1.2 编写yaml文件

4.1.3 启动kafka和zk容器

4.1.4 检查容器是否启动成功

4.2 测试验证

4.2.1 进入kafka容器

4.2.2 创建一个topic

4.2.3 测试发送消息

4.3 创建两个备用topic

4.3.1 提前创建两个备用topic

4.3.2 开启生产窗口和消费窗口

五、flink 接收kafka数据并写入kafka

5.1 前置准备

5.1.1 组件版本说明

5.1.2 maven核心依赖

5.2 需求说明

5.3 核心代码实现过程

5.3.1 核心代码实现方式一

5.3.2 效果测试

5.3.3 核心代码实现方式二

六、flink 接收kafka数据写入mysql

6.1 前置准备

6.2 代码实现过程

6.2.1 自定义实体类

6.2.2 添加自定义Sink函数

6.2.3 核心任务逻辑实现

6.2.4 效果测试

七、写在文末


一、前言

在大数据场景中,Flink作为重要的流式处理框架,在架构运行中承载着重要的作用,与之配合使用的就是大家熟悉的高性能消息中间件kafka,两者的结合,就可以解决很多场景下的流式数据问题,本文将通过几个案例详细介绍一下。

二、流式数据处理场景介绍

2.1 流式数据处理概述

流式数据处理(Streaming Data Processing)指的是对连续不断的数据流进行实时处理的技术。这种处理方式适用于需要对大量数据进行快速反应和决策的场景。尤其在需要实时分析、决策支持和即时响应的应用场景中尤为重要。

2.1.1 流式数据处理场景介绍

下面详细介绍几种常见的流式数据处理场景:

  • 实时数据分析

### Apache Flink 使用指南及官方文档资源 Apache Flink 是一个分布式流处理框架,支持高吞吐、低延迟的实时数据处理。以下是关于 Flink 的使用指南和官方文档资源的详细介绍: #### 1. 官方文档 Flink 官方文档是学习和使用 Flink 的最佳起点,涵盖了从入门到高级的所有主题。文档地址为 [https://nightlies.apache.org/flink/flink-docs-release-1.17/](https://nightlies.apache.org/flink/flink-docs-release-1.17/)。以下是文档的主要内容分类: - **快速开始**:提供了安装和运行 Flink 的基本步骤,包括本地环境配置和简单示例代码[^3]。 - **核心概念**:详细介绍了 Flink 的核心组件,如 DataStream API、Table API、SQL 等[^3]。 - **部署与运维**:涵盖了如何在不同环境中部署 Flink 集群,例如 Kubernetes、YARN 和独立集群模式[^3]。 - **性能调优**:提供了优化 Flink 应用程序性能的最佳实践,包括并行度设置、内存管理等[^3]。 #### 2. 社区支持与学习资源 除了官方文档,Flink 社区也提供了丰富的学习资源和支持渠道: - **邮件列表**:通过加入用户邮件列表或开发者邮件列表,可以获取来自社区的帮助和建议[^3]。 - **Stack Overflow**:许多常见问题已经在 Stack Overflow 上得到了解答,搜索标签 `apache-flink` 可以找到相关讨论。 - **Flink Meetup 和 Conference**:定期举办的线上或线下活动,分享最新的技术进展和最佳实践。 #### 3. 示例代码与项目参考 为了更好地理解 Flink 的实际应用,可以通过以下项目进行学习: - **Flink Shaded Artifacts**:该项目提供了一些用于隔离依赖的工具库,帮助开发者避免版本冲突问题[^1]。 - **Flink Benchmarks**:包含了一系列基准测试程序,展示了如何评估 Flink 的性能表现[^2]。 #### 4. 示例代码 以下是一个简单的 Flink 流处理程序示例,演示了如何读取 Kafka 数据源并进行基本转换操作: ```java import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.connector.kafka.source.KafkaSource; public class SimpleFlinkKafkaExample { public static void main(String[] args) throws Exception { // 创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 配置 Kafka 数据KafkaSource<String> kafkaSource = KafkaSource.<String>builder() .setBootstrapServers("localhost:9092") .setTopics("input-topic") .setStartingOffsets(OffsetsInitializer.earliest()) .setValueOnlyDeserializer(new SimpleStringSchema()) .build(); // 从 Kafka 中读取数据并打印 env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "Kafka Source") .map(value -> value.toUpperCase()) // 转换为大写 .print(); // 启动任务 env.execute("Simple Flink Kafka Example"); } } ``` 此代码片段展示了如何连接到 Kafka 数据源,并对消息进行简单转换后输出。 --- ###
评论 215
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值