【AI智能体】Dify 搭建发票识别助手操作实战详解

目录

一、前言

二、Dify 概述

2.1 Dify是什么

2.2 Dify核心特性

2.2.1 Dify特点

2.2.2 多模型支持

2.3 传统发票识别技术与AI识别方案对比

2.3.1 传统发票识别技术方案

2.3.2 传统发票识别技术方案局限

2.3.3 基于Dify 搭建发票识别应用优势

三、Dify 搭建发票识别助手操作过程

3.1 前置操作说明

3.1.1 安装必要的插件

3.2 提取图片发票的内容

3.2.1 创建新应用

3.2.2 开始节点增加一个文件类型参数

3.2.3 增加一个文档提取器节点

3.2.4 增加大模型节点

3.2.5 配置回复结束节点

3.2.6 效果测试

3.3 提取PDF发票文件内容

3.3.1 安装PDF插件

3.3.2 增加PDF工具节点

3.3.3 调整大模型节点

3.3.4 效果测试

四、写在文末


一、前言

对传统业务系统或应用来说,实现一个新功能,从设计到最终开发完成,这个过程的耗时可能非常长。随着AI智能体在很多领域使用的越来越广泛,并逐渐产生商业价值之后。人们惊讶的发现,一个可以实现商用的业务系统或应用,只需短短几天,甚至几小时就可以做出来。这让人有理由相信,智能体已经强大到什么程度了,究竟智能体的潜力是不是没有上限呢?本篇以Dify为例,来搭建一个传统的应用系统中常用的功能,识别发票为例进行详细的说明。

二、Dify 概述

2.1 Dify是什么

Dify 是一个开源大模型应用开发平台,旨在帮助开发者快速构建、部署和管理基于大型语言模型(LLM)的 AI 应用。它提供了一套完整的工具链,支持从提示词工程(Prompt Engineering)到应用发布的全流程,适用于企业级 AI 解决方案和个人开发者项目。

官网入口:

【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了相应的Matlab代码实现。该模型结合了MBLS在非线性映射和快速学习方面的优势,以及Copula函数在刻画多变量随机变量之间复杂相关性结构的能力,能够有效处理光伏发电的不确定性与时空相关性,从而提高预测精度和可靠性。此外,文中还列举了多个相关领域的研究案例和技术应用,展示了其在电力系统、机器学习、路径规划等多个方向的广泛应用前景。; 适合人群:具备一定编程基础和电力系统背景知识,熟悉Matlab编程语言,从事新能源发电预测、电力系统优化等相关领域研究的研发人员和高校师生。; 使用场景及目标:①应用于光伏电站的实际功率预测中,提升电网调度的准确性和稳定性;②作为学术研究工具,探索新型预测算法在处理非线性和不确定性问题上的潜力;③为其他可再生能源如风力发电的概率预测提供借鉴和参考。; 阅读建议:建议读者结合实际数据进行实验验证,深入理解MBLS和Copula理论的核心思想及其实现细节,同时关注模型参数的选择对预测性能的影响,以期达到最佳的应用效果。
### Dify 文档识别使用指南 Dify 平台提供了强大的文档处理能力,特别是针对PDF文件转换成Markdown的功能。为了实现这一目标,在平台上集成了Magic-PDF工具来完成从PDF到Markdown的转换过程[^2]。 对于希望利用Dify进行文档识别和处理的用户来说,可以遵循如下方法: #### 准备工作 确保已经安装并配置好了Dify环境,并且能够正常访问其API接口和服务。如果打算使用Ollama本地模型,则需按照官方指导完成相应设置[^3]。 #### 创建文档解析Agent 通过定义特定的工作流程(Workflow),创建一个新的Agent用于执行文档解析任务。此Agent应具备接收上传文件的能力,并调用内置或第三方服务来进行内容提取与格式转换操作。 #### 实现PDF转Markdown功能 借助于集成好的Magic-PDF插件,当接收到PDF类型的输入时,自动触发转换逻辑,最终输出为易于编辑阅读的Markdown文本形式。这一步骤不仅限于简单的文字迁移,还包括保留原始布局结构以及图片等多媒体元素的有效嵌入。 #### 启用图文对话支持 为了让交互更加直观友好,在问答环节引入了对图像的支持特性。这意味着无论是提问还是回答过程中都可以包含视觉化的内容展示,极大提升了用户体验质量。 #### 监控性能表现 考虑到实际应用场景中的稳定性需求,建议启用Prometheus作为监控解决方案的一部分。重点关注诸如`ollama_api_latency`, `dify_request_volume`, `cache_hit_rate` 和 `error_types`这样的关键指标,以便及时发现潜在问题并采取优化措施。 ```python import requests def convert_pdf_to_markdown(file_path): url = "http://localhost:8000/api/v1/document/convert" files = {'file': open(file_path, 'rb')} response = requests.post(url, files=files) if response.status_code == 200: markdown_content = response.text return markdown_content else: raise Exception(f"Failed to convert PDF: {response.content}") ```
评论 74
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值