算法分析:方阵的主对角线之上称为“上三角”。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhanggang740/article/details/50036331

4、方阵的主对角线之上称为“上三角”。

请你设计一个用于填充n阶方阵的上三角区域的程序。填充的规则是:使用1,2,3….的自然数列,从左上角开始,按照顺时针方向螺旋填充。

例如:当n=3时,输出:
1 2 3
6 4
5
当n=4时,输出:
1 2 3 4
9 10 5
8 6
7
当n=5时,输出:
1 2 3 4 5
12 13 14 6
11 15 7
10 8
9
程序运行时,要求用户输入整数n(3~20)
程序输出:方阵的上三角部分。
要求格式:每个数据宽度为4,右对齐。

思路解析

拿到这样一个题目,很明显是一个找规律的题目,既然是有规律的,那自然就好解了。
下面,我来给大家拆分一下,你也许就发现了点什么,首先来看这张图
这里写图片描述
从这个图中再来分析2个点。
第一个点:把整个输出结果按层拆分,例如:
当n=4时,1 2 3 4 5 6 7 8 9为最外层第一层,10为第二层
当n=5时,1 2 3 4 5 6 7 8 9 10 11 12为最外层第一层,13 14 15为第二层
当n=6时,
1 2 3 4 5 6
15 16 17 18 7
14 21 19 8
13 20 9
12 10
11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 为最外层第一层,16 17 18 19 20 21为第二层
以此类推
第二个点:在每一层中在进行拆分,从上面的分析看出,每一层可以分成3份,每一份为n-1;
有了这样一套整体的划分和规律,在来分析一下下面这串代码。

        //n为我们人为输入的数
        //定义一个二维数组存放变量值
        int a[][] = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n - 1 - i * 2; j++)

            {
                a[i][j] = k;
                k++;
            }
            for (int j = i; j < n - i * 2 - 1; j++) {
                a[j][n - 1 - i - j] = k;
                k++;
            }
            for (int j = i; j < n - 2 * i - 1; j++) {
                a[n - 1 - i - j][i] = k;
                k++;
            }
        }

外面的for循环即时我们前面分析的层。我们还是例如:
当n = 4时。二维数组的分布情况,暂时还未填充数据
a[0][0] =null a[0][1] =null a[0][2]=null a[0][3]=null
a[1][0] =null a[1][1] =null a[1][2]=null a[1][3]=null
a[2][0] =null a[2][1] =null a[2][2]=null a[2][3]=null
a[3][0] =null a[3][1] =null a[3][2]=null a[3][3]=null
有人说,当n=4时只有2层,这个for循环不是会执行4次吗,不要着急,我们在for循环里面还可以来进行限制嘛。
里面的3个for循环一一来分析:主要是来控制他的输出格式,而输出的数字,由二维数组控制。
内部!第一个for循环
这里写图片描述
此时假设后面的2个for循环已经执行完,则执行完后他赋值的参数如下:(为了方便排版001代表1)
a[0][0] =001 a[0][1] =002 a[0][2]=003 a[0][3]=000
a[1][0] =000 a[1][1] =000 a[1][2]=000 a[1][3]=000
a[2][0] =000 a[2][1] =000 a[2][2]=000 a[2][3]=000
a[3][0] =000 a[3][1] =000 a[3][2]=000 a[3][3]=000
第二个for循环
这里写图片描述
执行完后他赋值的参数如下:
a[0][0] =001 a[0][1] =002 a[0][2]=003 a[0][3]=004
a[1][0] =000 a[1][1] =000 a[1][2]=005 a[1][3]=000
a[2][0] =000 a[2][1] =006 a[2][2]=000 a[2][3]=000
a[3][0] =000 a[3][1] =000 a[3][2]=000 a[3][3]=000
第三个for循环
这里写图片描述
执行完后他赋值的参数如下:
a[0][0] =001 a[0][1] =002 a[0][2]=003 a[0][3]=004
a[1][0] =009 a[1][1] =000 a[1][2]=005 a[1][3]=000
a[2][0] =008 a[2][1] =006 a[2][2]=000 a[2][3]=000
a[3][0] =007 a[3][1] =000 a[3][2]=000 a[3][3]=000
执行到这里n=4的结果已经出来了,只是跟题目的输出还有出入

这里写图片描述“`
采用此循环输出,过滤到为0的即可得到n=4的结果
a[0][0] =001 a[0][1] =002 a[0][2]=003 a[0][3]=004
a[1][0] =009 a[1][1] =000 a[1][2]=005
a[2][0] =008 a[2][1] =006
a[3][0] =007

做到这里这道题基本已经完工,但是显然还有瑕疵,细心的同学可能已经发现,当n=4时,第二层的数10并没有赋值,当n=5时所有数完整输出。那我们猜想是不是偶数最中间的数都不会填充呢?多带入几个到以上算法,很容易发现当(n - 1) % 3 == 0,中间的数不会填充。想到这里,

 if ((n - 1) % 3 == 0)
        a[(n - 1) / 3][(n - 1) / 3] = k;

2句代码解决这个问题。

最终完整代码

public class Test{
    public static void main(String[] args) {

        //键盘输入
        Scanner sc = new Scanner(System.in);
        System.out.println("put n!");
        //n代表当前的循环数
        int n = sc.nextInt();
        int k = 1;
        //定义一个二维数组存放变量值
        int a[][] = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n - 1 - i * 2; j++)

            {
                a[i][j] = k;
                k++;
            }
            for (int j = i; j < n - i * 2 - 1; j++) {
                a[j][n - 1 - i - j] = k;
                k++;
            }
            for (int j = i; j < n - 2 * i - 1; j++) {
                a[n - 1 - i - j][i] = k;
                k++;
            }
        }
        if ((n - 1) % 3 == 0)
            a[(n - 1) / 3][(n - 1) / 3] = k;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (a[i][j] == 0)
                    continue;
                if (a[i][j] < 10)
                    System.out.print(a[i][j] + "   ");
                else if (a[i][j] < 100)
                    System.out.print(a[i][j] + "  ");
                else
                    System.out.print(a[i][j] + " ");
            }
            System.out.println("");
        }
    }
}

没有更多推荐了,返回首页